SWAP: Protecting Pull-Based P2P Video Streaming Systems From Inference Attacks

Giang Nguyen
Communication Networks, TU Dresden, Germany

Stefanie Roos, Benjamin Schiller and Thorsten Strufe
Privacy and Data Security, TU Dresden Germany

Coimbra, Portugal
22.06.2016
Motivation

- Appearance of video streaming services
- Demand for videos: consistent growth
- Bandwidth supply at Internet core: increases slowly
- Consequences:
 - High cost for service provider
 YouTube: $1 million/day
 - Lower quality of experience
 ~400 kbps
- Service unavailability:
 - Under sudden demand
 - Due to sabotage

How to deliver reliable video streams to a large number of users in a cost-effective and resource-efficient way?

(Source: Cisco)
Content

1. Introduction
2. Related work
3. SWAP scheme
4. Evaluation
5. Conclusion
Peer-to-Peer

- Incorporates peers bandwidth
- Advantages:
 - Lowered cost
 - Scalable
- Disadvantages:
 - Affected by churn (including failure)
 - Vulnerable to attacks
- Fundamental building blocks:
 1) Membership management
 2) Overlay construction
 3) Dissemination of video chunks
Related work

Push-based
- Low delay
- Low overhead
- Low robustness

Pull-based
- Higher delay
- Higher overhead
- Higher robustness
 (Example: DONet)

Hybrid
- Low delay & overhead
- Increased robustness
- Fragile backbone (Example: mTreebone)

How to improve the resilience of P2P streaming systems against both churn and attacks?
Related work

Tiering effects

- Insights from PPLive
 - Tiering effects
 - Stable over time

- Consequences
 - Overlay network structure revealed
 - Disrupting the flow of the video distribution
 - Especially when targeting head nodes

(Hei et al., 2007)
Attacker model

- Inferring overlay structure
 - Collect buffer maps
 - Offset

 \[\delta_{u,i} := (h_{u,i} - h_{v,i}) - (t_{u,i} - t_{v,i}) \cdot \frac{r}{L} \]

- Inference attacker model
 - Probing buffer maps
 - probability \(q \) to get a buffer map
 - \(m \) rounds
 - Identifying head nodes
 - Shutting down head nodes
SWAP scheme

- General idea:
 Increasing dynamics to mitigate attacks

- SWAP's operations:
 1) Partner nomination
 2) Nomination forwarding
 3) Periodic swapping
Evaluation (1/4)

• Questions:
 1) How accurately does the inference attacker identify head nodes?
 2) How efficiently does SWAP mitigate the inference attacker?
 3) To which extent does SWAP increase the resilience of pull-based systems against the inference attacker?

• Metrics:
 ▪ Attack's accuracy
 ▪ Average and maximum miss ratios

• Settings:
 ▪ 2000 peers, 1200 seconds simulation time
 ▪ Upload bandwidth: Source 8 Mbps, peer 1 Mbps,
 ▪ Coordinated attack at 800 seconds after start of stream
How accurately does the inference attacker identify head nodes?
Evaluation (3/4)

How efficiently does SWAP mitigate the inference attacker?
To which extent does SWAP increase the resilience of pull-based systems against the inference attacker?
Conclusion

- **Challenges:** Inference attacker
 1) Collects buffer maps to identify head nodes
 2) Shuts down head nodes

- **Countermeasure:** SWAP scheme
 1) Nominates a partner as replacement
 2) Forwards nomination message
 3) Swaps partners proactively

- **SWAP** drastically reduces chunk miss ratios