
Project description Oberseminar 2017
Topic: SDN hardware acceleration

MEng. Marian Ulbricht

ulbricht@innoroute.de

October 5, 2017

SDN is one of today key technologies in modern networks. SDN enables an software based network

definition by one or multiple control entities. The disadvantage of software based packet processing is

the introduced delay in comparison to pure hardware solutions. Therefore hybrid devices with SDN

acceleration units are used to provide the full feature-set of SDN(e.g. OpenFlow) in software and

accelerate some rules in hardware. Of course the hardware acceleration units can’t have the same

features and table-sizes like the software implementation of SDN switches. The question is, how to

map the SDN rules from software to hardware, by not breaking the rules dependencies? Kaplayan [1]1

gives an detailed view on a SDN acceleration implementation. Your task is to do a source research

for existing mapping rules and techniques to transfer rules from an full SDN switch(e.g. OVS) to an

hardware acceleration structure with a restricted feature set. (e.g. Flowcache @ TrustNode [2])

Todo:

• do research

• collect all suitable solutions

• compare them

• write a report(with LATEX) using the collected content

• prepare a presentation

References

[1] G. Kaplayan, “Software-defined network packet classification on FPGA,” Master’s thesis, Tech-

nical University Munich, 2017.

[2] C. Liß, M. Ulbricht, U. F. Zia, et al., “Architecture of a synchronized Low-Latency network

node targeted to research and education,” in 2017 IEEE 18th International Conference on High

Performance Switching and Routing (HPSR) (IEEE HPSR’17), Campinas, Brazil, Jun. 2017.

[Online]. Available: https://innoroute.com/wp-content/uploads/2017/06/HPSR17-TN.pdf.

1Download the document .

1

 InnoRoute GmbH
Marsstrasse 14a

 80335 Munich, Germany

SOFTWARE-DEFINED

NETWORK PACKET

CLASSIFICATION ON FPGA

Master Thesis
25. September 2017

Goekhan Kaplayan
TUM MSCE

Page | 1

Abstract

Multi-field packet classification has evolved from fixed 5-tuple matching to flexible

matching with arbitrary combinations of several packet headers. For example,

OpenFlow 1.0 requires classifying each packet using up to 12-tuple packet header

fields. Conventional packet classification methods are insufficient in addressing the

challenge of increasing the number of fields. Decision-tree based packet

classification algorithms do not scale well to the number fields for OpenFlow.

Decomposition algorithms failed to provide incremental update and deterministic

latency.

To catch up the trend for OpenFlow switches, I propose hybrid flow caching

approaches on FPGAs, named FlowCache. The approaches use exact matching

methods with field masking. The hybrid concept combines a highly optimized rule

type-specialized matching circuit with a generic matching circuit that supports

arbitrary combinations of fields. FlowCache allows incremental update and has

deterministic latency. The purpose is to accelerate active, high priority and elephant

flows on the FPGA and to process all remaining flows on the processor. Therefore, it

is designed to improve average performance, not worst-case performance.

The implemented FlowCache is optimized based on the analysis for a data center. 88

percent of rules in the analyzed rule set belong to only four rule types. By exploiting

this observation, the rule type-specialized matcher stores the four most common rule

types in a memory efficient way and the rest of rule types are stored in the generic

matcher in a much less efficient way. According to the resource utilization of

FlowCache, it is possible to easily store up to 8K entries in the rule type-specialized

matcher and 1K entries in the generic matcher by using the resources of our target

FPGA.

Page | 2

Contents
List of Figures .. 4

List of Tables ... 5

List of Abbreviations.. 6

1. Introduction ... 7

2. Background ... 10

2.1 Problem Statement ... 10

2.2. Traditional Packet Classification.. 10

2.2.1 Linear Search Schemes ... 11

2.2.2 Table Schemes .. 11

2.2.3 Hash-based Schemes .. 11

2.2.4 Trie Schemes ... 11

2.2.5 CAM Schemes.. 12

2.3 OpenFlow Packet Classification ... 12

2.3.1 Decision-tree Schemes .. 14

2.3.2 Decomposition-based Schemes .. 15

2.4 Flow Caching... 15

2.5 TrustNode .. 17

3. FlowCache .. 18

3.1 Objectives .. 18

3.2 Overview.. 18

3.3 Search Units .. 21

3.3.1 Hash-Based .. 22

3.3.2 Linear Search ... 24

3.3.3 TCAM-based .. 25

3.4 TCAM Implementation .. 27

3.5 Rule Set Analysis .. 31

3.6 Hash Collision Analysis... 36

3.6.1 Analytical Analysis.. 37

3.6.2 Experimental Analysis .. 38

3.7 Evaluation .. 40

3.7.1 FlowCache Results .. 41

3.7.2 Search Units Results .. 43

4. TrustNode as OpenFlow Switch ... 45

Page | 3

4.1. Architecture .. 45

4.2. Software ... 46

4.2.1. Open vSwitch .. 46

4.2.2 Mapping Software .. 48

4.3 Hardware ... 49

4.4 Test Setup ... 53

5. FlowCache with Axonerve .. 55

5.5.1 Axonerve Introduction .. 55

5.5.2 Axonerve Integration to FlowCache .. 56

5.5.3 Evaluation Results ... 58

6. Conclusion and Future Work .. 60

Acknowledgements ... 62

References .. 63

Appendix A: Search Units Implementation Details .. 65

Appendix B: Rule Structure of FlowCache ... 67

Page | 4

List of Figures
Figure 1: Block diagram of packet classification and processing .. 7

Figure 2: Geometric representation of HiCuts and HyperCuts with 4 rules [40] 14

Figure 3: Example scenario for flow caching ... 16
Figure 4: Main components of TrustNode [31] .. 17

Figure 5: FlowCache general element structure [31] .. 19
Figure 6: Block diagram of FlowCache .. 20

Figure 7: Block diagram of hash-based and TCAM-based search units 21

Figure 8: Example scenario for hash-based unit ... 23
Figure 9: Block diagram of linear search unit .. 24

Figure 10: Example scenario for TCAM-based unit .. 26

Figure 11: Different approaches for TCAM implementation .. 27
Figure 12: 1x1 TCAM implementation by 2x1 RAM .. 28

Figure 13: 128x64 TCAM implementation by 16 128x16 RAM without update logic 29

Figure 14: Timing results for different TCAM sizes ... 31
Figure 15: Block diagram of rule set analysis .. 32

Figure 16: Header field distribution in the rule sets ... 33

Figure 17: Rule type distribution in the rule sets ... 34
Figure 18: FlowCache entry types in the rule sets .. 35

Figure 19: Match type distribution of IP destination and source addresses in the rule sets .. 36

Figure 20: Block diagram of experimental analysis for hash collision..................................... 38
Figure 21: (a) Collision histogram for EMH when configuring 512 entries (b) collision

histogram for EMA when configuring 128 entries .. 38

Figure 22: Expected number of collisions with respect to hash length and hash type when (a)

configuring 512 EMH entries and (b) when configuring 128 EMA entries 39

Figure 23: Expected number of collisions with respect to number of entries in EMH and EMA

 .. 40
Figure 24: Block diagram of FlowCache with latency analysis for default table sizes 41

Figure 25: Latency results of search units for different table sizes ... 43

Figure 26: Throughput results of search units for different table sizes 44

Figure 27: TrustNode as an OpenFlow switch .. 45

Figure 28: Slow path and fast path in TrustNode .. 46

Figure 29: Components of Open vSwitch [5] ... 46

Figure 30: Open vSwitch forwarding model with microflow cache and megaflow cache [34] 47

Figure 31: Flowchart of mapping software API.. 48
Figure 32: OpenFlow switch architecture of TrustNode .. 49

Figure 33: Screenshot of the logic distribution with the FlowCache design highlighted 50

Figure 34: Parallel modules with shared pipeline [31] ... 51

Figure 35: Test setup ... 53

Figure 36: Screenshot of packet generator ... 54

Figure 37: Screenshot of packet captures ... 54
Figure 38: Hardware resource requirements (relative to Virtex7 xc7vx690) for different sizes

of Axonerve [24] ... 55

Figure 39: Block diagram of FlowCache with Axonerve .. 57
Figure 40: Example scenario for Axonerve-based unit ... 58

Figure 41: Hash-based unit implementation details .. 65

Figure 42: Linear search unit implementation details .. 65
Figure 43: TCAM-based unit implementation details .. 66

Page | 5

List of Tables
Table 1: Match fields of OpenFlow 1.0 .. 13

Table 2: Example OpenFlow table ... 13

Table 3: Example Packets ... 13
Table 4: ID lengths of TCAM-based .. 25

Table 5: A ternary bit in RAM ... 29
Table 6: Results of TCAM implementations with different sizes ... 30

Table 7: EMH entry types ... 35

Table 8: Latency results of modules in FlowCache ... 41
Table 9: Latency, throughput, and power dissipation of FlowCache with default table sizes 42

Table 10: Resource utilization of FlowCache with default table sizes 42

Table 11: Field ID assignment of Axonerve ... 56
Table 12: Latency, throughput, and power dissipation of FlowCache with Axonerve 59

Table 13: Resource utilization of FlowCache with Axonerve .. 59

Table 14: EMH rule structure ... 67
Table 15: EMA rule structure ... 67

Page | 6

List of Abbreviations
API Application Program Interface

ARP Address Resolution Protocol

ASIC Application-Specific Integrated Circuit

BCAM Binary CAM

BRAM Block RAM

distRAM Distributed RAM

CAM Content Addressable Memory

Dst IP IP destination address

Dst MAC Destination MAC address

EMA Exact Match Arbitrary

EMH Exact Match Hardcoded

Ether Type Ethernet type

FPGA Field Programmable Gate Array

GbE Gigabit Ethernet

Gbps Gigabits per second

HiCuts Hierarchical Intelligent Cutting

ICMPv6 Internet Control Message Protocol version 6

Ing Port Ingress Port

IP Internet Protocol

IPv4 IP version 4

IPv6 IP version 6

L4 ISO-OSI Layer 4

LPM Longest Prefix Match

MAC Medium Access Control

Mbps Megabits per second

MMI Memory-Mapped Interface

Mpps Million packets per second

NIC Network Interface Card

NoC Network on Chip

PHY Physical Layer

QoS Quality of Service

RAM Random Access Memory

RFC Recursive Flow Classification

SDN Software-Defined Networking

SRAM Static RAM

Src IP IP source address

Src MAC Source MAC address

TCAM Ternary CAM

TCP Transmission Control Protocol

TOS Type of Service

UDP User Datagram Protocol

VLAN Virtual Local Area Network

VoIP Voice over Internet Protocol

Page | 7

1. Introduction

Packet classification is an important function for different applications in switches,

routers and firewalls. Such applications categorize packets according to given rule

sets into flows. The definitions for packet classification are the followings:

• A flow is a stream of relevant packets that share the same characteristics.

• A rule contains multiple field values that specify an exact packet header or a

portion of packet header. For example, a rule specifies first 8 bits of IP source

address, whereas destination MAC address is specified by 48 bits.

• A rule set consist of rules and defines how to classify packets based on their

header fields.

Figure 1: Block diagram of packet classification and processing

Packet classification methods search a rule set which binds a packet to a flow by

assigning a flow identifier, FlowID. If there are multiple matches in a rule set, the

most prioritized one is assigned as FlowID. FlowID determines the action applied to

the packet. As shown in Figure 1, the packets with same FlowID form a flow and the

action unit takes actions based on their FlowID. The main role of action unit is to

modify packet header fields and to forward it from one port to another.

Although it has been studied well, traditional packet classification methods do not

meet the requirements of new applications. New network functionalities, such as

firewall processing, QoS differentiation, virtual private networks, require multi-field

packet classification. For example, current data center network required fine-grained

flow control to route traffic efficiently. Since traditional methods consider only the

Page | 8

fixed 5-tuple fields, they don’t support fine-grained rule specification for multi-field

packet classification.

Software-Defined Networking (SDN) has been proposed as a leading architecture to

facilitate the innovation of computer networks [1]. The data plane, which forwards

packets, and the control plane, which implements the protocols to manage the data

plane are separated from each other. In other words, SDN provides an abstraction

between the control plane and the data plane in a network. It also provides an open

software platform to run experiments and develop new protocols. OpenFlow [1] is a

protocol which enables the communication between SDN switch and SDN controller.

OpenFlow 1.0 [2] employ complex rule specifications including 12 header fields.

OpenFlow technologies centralize the complexity to the OpenFlow controller. The

controller configures the flow tables in the OpenFlow switch by OpenFlow protocol.

Classifications systems based on processor have been experiencing large attention

in recent years, mainly due to their flexibility. For example, the OpenFlow community

provides an open-source software package for Linux that implements a software

OpenFlow switch as a reference implementation [4]. Similarly, Open vSwitch [5] also

supports OpenFlow protocols. On the other hand, they cannot meet line-speed

requirements for high-speed networking applications since their throughput is limited

with the processor. FPGAs offer an opportunity to meet line speed requirements. In

contrast to ASICs, FPGAs can be reconfigured many times with different matching

circuits. Since OpenFlow standards change over time, the ability to reconfigure

FPGAs enables us to change the design. OpenFlow switches [6,7] have been

developed on the NetFPGA platforms [8]. FPGAs are making their way into data

centers are used to offload and accelerate specific services [41].

In this thesis, I propose a hybrid FPGA-based classification engine, named

FlowCache, which combines exact match of hard-coded types and exact matching of

arbitrary types. It uses 3 different search methods, which are hash table, linear

search and TCAM-based. This architecture exploits the observation that most of the

rules belongs to certain rule types. Since the FlowCache supports field masking, it is

OpenFlow friendly.

The initial design of hash-based unit is provided as an existing IP in the beginning of

the thesis. I adapt it for OpenFlow packet classification by mapping the four most

used types to it. Moreover, I design the TCAM-based unit that is capable of storing all

rule types. Overlapping and more prioritized rules become mappable with the TCAM-

based unit, thus it improves the mapping power of all design significantly. Besides

storing OpenFlow rules in the TCAM-based unit, it can be also used as a collision

table of the hash based unit. Similar to the wildcard unit in the NetFPGA design [6],

another usage of the TCAM-based unit is to forward flows between a virtual port and

a physical port.

A small number of flows carry the majority of Internet traffic. These flows called as

elephant flows in computer networking. Our goal is to improve average performance

of packet classification by storing active and elephant flows in FPGA, whereas big

flow tables are stored in processor. The FlowCache has a deterministic latency with

pipelined design. Moreover, it allows incremental update. Thus, the entries in the

FlowCache can be updated without reconstructing the data structure.

Page | 9

Depending on the type of network application, the traffic and corresponding rule sets

should be considered when choosing the optimal data structure and algorithms. For

example, the network equipment in data center need fine-grained flow control over

thousands of physical and virtual machines, whereas the backbone router needs an

optimized packet classification method for IP routing. Therefore, I made rule set

analysis to understand the characteristics of rules and our data structures are

optimized based on this rule set analysis.

The remainder of this thesis is organized as follows: Section 2 provides required

background for this work. In Section 3, I explain the proposed packet classification

system with the evaluation and the analysis results. Section 4 explains how the target

platform is used as an OpenFlow switch. Section 5 provides the results of FlowCache

integrated with a third-party IP, named Axonerve. Finally, this thesis is concluded by

Section 6.

Page | 10

2. Background

This section states the problem we intend to solve and summarize exiting packet

classification methods. Then, the related work about flow caching is presented. At

last, our target platform is introduced.

2.1 Problem Statement

Incoming packet headers are mapped to the matching rule with the highest priority in

a defined rule set. After the packet classification is done, the packet is processed

according to the corresponding action of the matching rule. For example, the action

can be drooping the packet or forwarding the packet to a port. More formally, packet

classification is defined as follows:

• A packet header 𝐻 consist of 𝑑 relevant fields ℎ𝑗, i.e., 𝐻 = (ℎ1, … , ℎ𝑑) .

• Each field ℎ𝑖 is an element of 𝐷𝑖 that represent all possible values for ℎ𝑖, e.g.,

[0, 216 − 1] for L4 source port.

• 𝑈 represents the cross product for all header combinations 𝐷1𝑥 … 𝑥𝐷𝑑.

• A rule set 𝑅 consists of 𝑁 prioritized rules 𝑅1, … , 𝑅𝑁. Without loss of generality,

I assume that rule 𝑅𝑎 is more prioritized than rule 𝑅𝑏 if 𝑎 < 𝑏.

• Each rule 𝑅𝑖 is a function 𝑅𝑖: 𝑈 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} that consist of 𝐶1, … , 𝐶𝑑, where

𝐶𝑗: 𝐷𝑗 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} is a function that checks the match criterion on the

corresponding packet header fields.

• Rule 𝑅𝑖 matches a packet header 𝐻 if all header checks are true, i.e., 𝑅𝑖 (𝐻) =

 𝐶1
𝑖 (ℎ1) ∧ … ∧ 𝐶𝑑

𝑖 (ℎ𝑑) .

• Finally, the rule set 𝑅 is a function 𝑅: 𝑈 → {1, … , 𝑁} ∪ {𝕆} that returns the index

of matching rule or non-match symbol.

2.2. Traditional Packet Classification

In traditional 5-tuple packet classification, packets are classified based on the 5 fields

in the packet header, which are IP source/destination addresses, L4

source/destination ports, and IP protocol. There are different types of matching

criteria for fields: prefix match for IP source/destination addresses, range match for

L4 source/destination ports and exact match for IP protocol.

Numerous methods for traditional packet classification have been proposed to find

the optimal solution. To evaluate the methods, three main metrics are used: time

complexity, memory efficiency and scalability. Time complexity gives information

about how much time is needed to perform search or update operation. Memory

efficiency is the ratio between the required memory to maintain the data structure and

the data itself. In general, there is a tradeoff between time complexity and memory

efficiency. Scalability refers to the ability to increase the number of entries in the data

structure.

Page | 11

Traditional packet classification methods can generally be categorized into five major

schemes [10]: linear search schemes, table schemes, hash-based schemes, trie

schemes and CAM schemes. These schemes are discussed below.

2.2.1 Linear Search Schemes

Elements are ordered linearly with pointers to their next elements as a linked list. In

the worst-case time complexity for lookup is 𝑂(𝑛), where 𝑛 is the number of entries. It

is extremely inefficient for a high number of entries. However, if the number of entries

is low, it might be a good choice. In the FlowCache, this method is used as a collision

table of the hash-based unit.

2.2.2 Table Schemes

Direct addressable tables are arrays of elements addressed by their keys. Although

the time complexity is 𝑂(1), it requires a table entry for all potential key range. Due to

their memory requirement, it is not reasonable to use it for large key range. DIR 24-

8-Basic scheme [11] is the optimized version of direct addressable table for IPv4

routing. This technique reduces the memory requirement significantly by exploiting

the observation that most of IP packets are specified by prefixes shorter than 25-bit.

2.2.3 Hash-based Schemes

The idea of hash table is to create a direct addressable table in which there is almost

one to one mapping between keys and addresses of elements. Hashing function

makes the transformation from packet headers to compressed keys.

In the FlowCache, we used XOR operations as a hashing function. Since one to one

relation between the keys and addresses is impossible to achieve, hash collisions are

inevitable. Hash collisions during lookup are detected by comparing matching entry’s

fields against packet header fields so that the classification result is verified. If the

comparison result is negative, the hash based unit does not assign any FlowID.

When configuring the entries of hash table, there might be colliding entries. The

colliding entries are stored in a collision table in our architecture. Similarly, Cuckoo

Hashing [12] can be used to reduce the probability of hash collisions. Basically, there

are multiple hashing functions to create multiple addresses for each incoming packet.

In this way, most of the hash collisions can be resolved.

Hash-based schemes are very efficient for high range keys in terms of memory

requirements. The table entries are highly utilized, so they provide high memory

efficiency. Since their architecture is suitable for pipelined designs, they are widely

used in hardware packet classification engines. On the other hand, they don’t support

prefix matches, range matches as well as field masking.

2.2.4 Trie Schemes

Trie (prefix tree) is an ordered tree that used to represent strings, where tree’s edges

are labeled by the characters of strings and the strings are represented by the leaf

Page | 12

nodes. In the context of packet classification, the addresses are considered as

strings and spelled out character by character. Tries are widely used for longest

prefix match (LPM) of IP source/destination addresses.

PATRICIA Trie [13] is a binary compact trie where any node that has only one child is

merged with its child. In contrast to other tries, it does not store keys in its nodes. The

nodes maintain the number of bits that should be skipped over in order to make the

next decision. The average lookup time complexity is 𝑂(log (𝑚)), 𝑚 is the key length.

However, the worst-case lookup time complexity is 𝑂(𝑚). Since they don’t provide

deterministic latency, it is difficult to use them in a pipelined hardware design.

2.2.5 CAM Schemes

Content addressable memory (CAM) is a special memory type that enables

searching in a single clock cycle. It simultaneously compares a key against all entries

in the CAM and returns the address of the matched entry. Binary CAM (BCAM)

stores and compares only bits, which are “0” and “1”. Whereas, Ternary CAM

(TCAM) supports an additional don’t care bit. This feature enables TCAM to lookup

with masking information.

TCAM-based schemes are widely used in network processing due to their ability to

process packets at high speed. On the other hand, TCAMs need large silicon area

and have high power consumption. Moreover, they do not provide the flexibility to

match arbitrary number of packet headers.

2.3 OpenFlow Packet Classification

OpenFlow packet classification aims to match a greater number of header fields then

traditional packet classification does. Recently proposed OpenFlow 1.4 specification

[9] requires classifying each packet up to 42 header fields. Besides the traditional

layer-3 and layer-4 packet header fields, more header fields are defined to support

complex protocols. In the future, these complex protocols are expected to be widely

used in high-speed networking applications.

OpenFlow switch contains a flow table which is configured by the controller to classify

packets. The flow table consist of several entries. Each entry has its own priority field.

If the packet headers match multiple entries, the one with higher priority determines

FlowID. OpenFlow 1.0 employ complex rule specifications including 12 header fields.

For OpenFlow 1.0, a flow entry composed of match field, counters and an associated

action. There are no sequential look tables in this version of OpenFlow. As shown in

Table 1, the 10 fields are defined as exact matches. IP source and destination

address are defined as prefix matches.

Each flow table entry has its own counters to record the conditions of entry. In other

words, the counters are used to collect statistics about flows so that the controller can

make decisions based on the statistics. After a matching entry is found, the

associated counters will be updated and the associated action will be taken.

Page | 13

Table 1: Match fields of OpenFlow 1.0

Header Field Number of bits Match Criterion

Ingress Port Variable Exact

Source MAC address 48 Exact

Destination MAC address 48 Exact

Ethernet type 16 Exact

VLAN ID 12 Exact

VLAN priority 3 Exact

IP source address 32 Prefix

IP destination address 32 Prefix

IP protocol 8 Exact

IP type of service 6 Exact

L4 source port 16 Exact

L4 destination port 16 Exact

OpenFlow uses the concept of flows to identify network traffic based on predefined

rules that can be dynamically programmed by the OpenFlow controller. Therefore,

the OpenFlow switch should allow incremental update to meet the requirement.

Some of existing packet classification algorithms does not allow incremental update.

For example, RFC [3] constructs a data structure from given rules and it is not

possible to update entries without reconstructing the data structure.

Table 2: Example OpenFlow table

Rule#
Ing
Port

Src
MAC

Dst
MAC

Ether
Type

Vlan
ID

Vlan
Prio

Src
IP

Dst
IP

IP
Prot

Ip
TOS

Src
Port

Dst
Port

Rule1 1 00:03:FF * 0x8100 15 * 1101 000* TCP 5 5 68

Rule2 * 07:06:33 * 0x8000 * 3 * * UDP * 10 *

Rule3 2 * * * * * * 110* * * * *

Rule4 2 * * * * * * 10** * * * *

Rule5 5 17:66:A4 0A:99:B3 0x8000 6 1 111* 000* TCP 3 22 1080

Table 2 shows a simplified example of OpenFlow rule table, where Src/Dst MAC are

24 bits, Src/Dst IP are 4 bits. Unlike traditional packet classification, the rules can be

categorized into 2 groups, simple rules and complex rules. A simple rule is defined as

the rule of which are all the fields are specified. “Rule5” is an example for a simple

rule. A complex rule is defined as the rule of which some fields are masked. “Rule1”

is an example of complex rule. As a result, each field might be either specified or

masked in OpenFlow packet classification, whereas match fields are fixed in

traditional packet classification.

Table 3: Example Packets

Packet#
Ing
Port

Src
MAC

Dst
MAC

Ether
Type

Vlan
ID

Vlan
Prio

Src
IP

Dst
IP

IP
Prot

Ip
TOS

Src
Port

Dst
Port

Packet1 2 00:02:A0 00:32:04 0x8100 7 2 1000 1101 TCP 4 5 68

Packet2 5 17:66:A4 0A:99:B3 0x8000 6 1 1111 0000 TCP 3 22 1080

Page | 14

Table 3 shows the header fields of example packets. “Packet1” matches “Rule3”.

Similarly, “Packet2” matches “Rule5”. There is also priority field for each rule, which

in not shown in Table 3. In case of multiple matches, the one with the higher priority

determines FlowID.

OpenFlow packet classification methods can be considered as improved version of

traditional packet classification methods in terms of their scalability with the number

of fields. Most of OpenFlow packet classification algorithms fall into decision-tree and

decomposition-based schemes. The remaining of this section gives the overview of

these schemes.

2.3.1 Decision-tree Schemes

Decision-tree schemes constructs a decision tree from the rule set and incoming

packet headers are traversed to find the matching rule. In other words, they take the

geometric view of the packet classification problem. Each rule defines a hypercube in

a multidimensional space and each packet represent a point in this multidimensional

space. Decision-tree schemes performs some heuristic methods to cut the space into

smaller subspaces. In each cutting, you end up with fewer potential rules. Finally,

linear search is performed to find the best matching rule.

Figure 2: Geometric representation of HiCuts and HyperCuts with 4 rules [40]

There are some variations of decision-tree schemes based on the method of cutting

the space. HiCuts [17] cuts the space evenly each time by using a single dimension.

HyperCuts [18] allows multiple dimensions to be cut simultaneously to reduce the

length of the tree. Figure 2 shows a simple example of HiCuts (on left) and

HyperCuts (on right) with four rules in two-dimensional space. Both methods suffer

from memory overhead due to rule duplication. HyperSplit [19] solves the rule

duplication problem by using non-equal sized cuts. In general, they are difficult to

implement in hardware since determinism is hard to achieve with these schemes.

Moreover, they are not scalable with the number of fields. The depth of tree

increases with the number of fields. Therefore, it is difficult to implement them in a

pipelined design for a high number of fields.

Page | 15

2.3.2 Decomposition-based Schemes

Decomposition-based schemes search each packet header fields independently and

the results are combined at the end to find final classification result. In this scheme,

the search process can be parallelized. By implementing a decomposition based

approach on FPGA, the abundant parallelism on FPGA can be exploited.

RFC [14] and ABV [15] provide good performance at the expense of high memory

consumption. The aggregation of intermediate results leads to large memory

overhead. They are also incapable of updating the entries without reconstructing their

data structures. In general decomposition-based schemes provide good throughput

and scalability.

Sun et al. [16] provide a good solution for OpenFlow packet classification. Dissimilar

to other decomposition-based schemes, this scheme allows incremental update and

scales well to number of fields. They introduce extra data structures to remove the

rules. In this way, the entries are updated without reconstructing the data structure.

Although they claim that any match type is supported, wildcard and range matches

are converted to prefix and exact matches. Thus, the memory consumption increases

significantly for prefix and range matches.

2.4 Flow Caching

A cache is a fast storage for commonly referenced data. If data request contains

sufficient locality, the average performance can be improved. The time to access the

cache is significantly lower than the time to access main storage. By using the same

concept, the average performance for packet classification can be significantly

improved. Certain flows can be accelerated in hardware, the rest of flows are

processed in software. This type of switches can be categorized as software switches

with hardware classification.

The Intel 82599 Gigabit Ethernet controller [20] is used to accelerate OpenFlow

packet classification. Certain types of flow table entries are stored in on-board

classification hardware on NIC. The fast path gives 40 percent higher throughput

compared to the regular software based OpenFlow switching [20]. Dong et al [21]

also propose a solution based on rule caching for traditional packet classification.

However, their classification logic is not scalable with number of fields, so it cannot

be used for OpenFlow. Katta et al. [22] use TCAM to cache the rules of active flows.

This scheme is limited with an external TCAM. TCAMs are 400X more expensive and

consume 100X more power Mbit than the RAM-based storage [22].

Naous et al. [6] implement OpenFlow switch on the NetFPGA-1G platform. A packet

is parsed and then relevant fields are concatenated. The exact match lookup module

uses hashing functions to find the matching rule. In parallel with the exact lookup, the

wildcard lookup module performs the lookup in on-chip TCAM for wildcard rules. It

can store up to 64K exact match rules and up to 32 wildcard rules. The exact match

rules are stored in an external SRAM. Although the on-chip TCAM can store 32

wildcard entries, they are only used for forwarding between physical and virtual ports.

Yabe [7] improved Naous et al.’s design by implementing it on the NetFPGA-10G

Page | 16

board. Both designs use exact matching without field masking. Although OpenFlow

defines the rules in a fine-grained manner with masking fields, they store flows in a

coarse-grained manner without masking fields. Therefore, the efficiency of these

designs largely depends on the traffic pattern.

Our proposed flow caching method provide exact matching with field masking. In this

way, our FlowCache is OpenFlow friendly. Since we store only relevant fields of a

matching rule, it is more memory efficient than the NetFPGA design. Similarly, the

average cache hit rate is higher than the NetFPGA design. Because, the extra fields

stored in the NetFPGA design cause cache misses although corresponding rule is

stored in the FlowCache. Moreover, Open vSwitch [5] also cache certain flows in

kernel by using exact match with field masking. Thus, it is possible to map the entries

from the kernel module of OvS to the FlowCache without further processing.

(a) Example Flow Table in SW

(b) First Access to Flow Cache

(c) Second Access to Flow Cache without Field Masking

(d) Second Access to Flow Cache with Field Masking

Figure 3: Example scenario for flow caching

Figure 3 shows an example scenario that explains the difference between exact

match with field masking and without field masking. Packet 1 in Figure 3(b) does not

hit any entry in the FlowCache and matches a flow table entry in software. After the

first access, the corresponding entry is stored in the FlowCache. The FlowCache

without field masking stores all header fields of first packet, whereas the FlowCache

with field masking stores only relevant fields, which are ingress port and IP

destination address. Packet 2 in Figure 3(c) does not match any entry in the

FlowCache without field masking, although it corresponds to the same rule with

Packet 1. Packet 2 in Figure 3(d) match an entry in the FlowCache with field

masking. The FlowCache with field masking covers many practical scenarios in an

efficient way.

Page | 17

2.5 TrustNode

Our platform is a TrustNode board, which is a network device targeted to research

and education that provides a very low latency. Figure 4 shows the main components

of TrustNode. The TrustNode FPGA is a Xilinx Artix-200T FPGA, which provides us

enough resources for SDN offloading on FPGA. The FPGA is connected to 12

Ethernet PHYs that support 10/100/1000 Mbps connection. The TrustNode board

also contains a standard Intel x86-64 sub-board as the control processor. The FPGA

and the control processor are connected via a quad-line PCIe Gen. 2.1 interconnect.

Figure 4: Main components of TrustNode [31]

RGMIIs

Intel

Atom

Processor

4-8GB

DDR3L

ECC

Memory

TPM

Watchdog

2x USB2.0 HS

1x USB3.0 SS

1x SDHC/SDXC

2 Gigabit Ethernet

Ports with Clock

Recovery

10 Standard Gigabit

Ethernet Ports

Xilinx Artix-200T FPGA SyncE

Clock

BNC

Clock

In/Out

16 buttons

16 7-seg. displays

1 console port

System Controller &

System Monitoring

GPIO

LEDs
JTAG

PCIe

Page | 18

3. FlowCache

3.1 Objectives

The target for the FlowCache implementation is to have a low-latency protocol parser

and an exact-match forwarding table to enable Software-Defined Networking. More

specifically, the matching circuits should be optimized for OpenFlow 1.0 specification.

Multidimensional search makes the design complex and hard to implement on FPGA.

We have the following requirements for the FlowCache:

• The design should have low and deterministic pipeline latency. The long

latency violates the idea of hardware acceleration.

• Clear discrimination between flows is also an important optimization factor. If

there are multiple matches with the same priority, the classification should be

done in the processor, where the big flow tables are stored. The FlowCache

should not take any wrong action on incoming packets.

• The design should support line speed requirements so that we can handle the

traffic without losing the packets. The worst-case scenario should be taken

into account for the throughput.

• High memory utilization is also desired because the memory resources

(BRAM, distRAM) are limited on FPGA.

• Since OpenFlow provides a granular traffic control access to the OpenFlow

controllers, the efficient flow caching implementation should support fine-

grained rule declaration. In other words, flow caching with field masking is

important to cover many practical scenarios in an efficient way.

• The design should be pipelined to achieve high throughput. The pipelined

design enables the FlowCache to accept new input for each clock cycle.

• The design should allow incremental update and scale well with the number of

entries.

The idea is that most of the packets are forwarded by FPGA without passing the

control processor. Therefore, the FlowCache can be considered as a hardware

accelerator for packet classification. If there is no match for a packet in the FPGA, it

is passed through the processor by default. The processor picks out the ones which

require short latency or have high data rate and map them to the FlowCache in the

FPGA. Long-lived flows are also called as elephant flows in the literature. For

example, several flows are involved to setup VoIP connections. These control flows

are forwarded by the control processor. The final media stream is long-lived and has

high-volume packets. Therefore, it is accelerated by the FlowCache with real time

priority. By accelerating active and elephant flows, the most of traffic is forwarded by

the FPGA without using the control processor.

3.2 Overview

The implemented FlowCache has the following functionality:

Page | 19

• In the TrustNode data path, incoming packets are segmented with Network on

Chip (NoC) header information. The first segment of received packets, which

contains first 64 Bytes of a packet, are parsed in the FlowCache. Known

protocols are organized in a tree structure. Important protocol fields are

extracted from the root to the leaves. Unknown protocols are signaled, so a

marking for further processing in the control processor is possible. Special

protocol field values or special combinations thereof are signaled as well to

mark the respective packet for further processing in the control processor. For

example, ARP and ICMPv6 packets are forwarded to the control processor.

• As soon as parsing is finished, the relevant packet header information is

forwarded to the search units, which are hash-based, linear search and TCAM-

based.

• In the hash-based unit, all required fields are concatenated. Then a hashing

function is performed and this result is used as index in a hash table. The hash

table entries store pointers to rule table entries. The rule table entries are

checked against the original field values for verification of match process.

• In the linear search unit, linear table entries are checked against the original

field values in a sequential manner.

• In the TCAM-based unit, we perform individual hashing on each field and then

the hash results are concatenated. The concatenated result is applied to TCAM

as a key. Each TCAM entry is coupled with a rule table entry. In case of a

match in TCAM, the original field values are checked against the matched rule

table entry to detect collision due to hashing.

• In case of multiple matches from search units, a priority encoder selects the

most prioritized one.

Figure 5: FlowCache general element structure [31]

Datapath Module

Processing
+1 cycle

+1 cycle

+1 cycle

+1 cycle

+1 cycle

+1 cycle

+1 cycle

+1 cycle

Internal

Memories

Shared

Memories

MMI

Inter-DP IF

C B

A

FSM

Page | 20

Figure 5 shows the FlowCache general element structure. It is a cut-through design

optimized for low-latency, low-jitter and full line-speed processing. It has a delay

pipeline that provides constant amount of time for finite state machines. When the

lookup operation is finished in the FSMs, the FlowID information is inserted to the

delayed packet. It has two types of memories. The internal memories are used for

internal state changes of the FSMs. The shared memories are configured by the

control processor via a memory-mapped interface (MMI) and they store flow tables.

Moreover, the interface between other data path modules can be used to exchange

information.

Figure 6: Block diagram of FlowCache

Figure 6 shows the top level of the FlowCache. The input and output interfaces are

AXI4-Stream interfaces. This interface has a low overhead and provides great

flexibility. Since the FlowCache is designed for low-latency, it consists of pipelines of

modules with AXI4 interfaces and custom interfaces. It does not provide AXI4-Stream

backpressure to preceding units to pause their operation. Therefore, it has

deterministic latency. Moreover, the FlowCache does not introduce any jitter in the

data path.

Packets arriving at the FlowCache are parsed and the extracted fields are forwarded

to the lookup modules. The lookup modules use the extracted fields to find the

matching rule. In case of multiple matches, the priority encoder selects the highest

priority rule. Meanwhile, the packets go through the delay pipeline unit. The length of

this pipeline is fixed and adjusted for the lookup modules. At the end of the pipeline,

the FlowID information is inserted to the NoC header of corresponding packet. By

using the FlowID, the NoC action unit modifies certain fields in the NoC header.

Since the packets are interleaved in the data path, the NoC action unit holds a state

per input port. The NoC header fields of all segments are modified based on the first

segment. The current NoC action unit implementation supports dropping with

Page | 21

marking the dropping reason and forwarding to an output port that is configured by

the control processor.

The flow tables in the lookup modules are configured by the control processor via

MMI. Moreover, an action table is also programmed by the control processor. Since

the tables are stored in dual-port BRAMs on FPGA, the configuration of flow table

entries is done without stopping the packet classification. In other words, the

FlowCache supports synchronous lookup operation from the flow table entries and

configuration to the flow table entries.

The FlowCache supports exact matches with capability of masking fields. However, it

does not allow masking in the bit level. For example, it is possible to match

“192.168.14.99”, but not “192.168.*.*”. Prefix matches and range matches are

converted to exact matches to store in the FlowCache.

3.3 Search Units

Figure 7: Block diagram of hash-based and TCAM-based search units

Page | 22

The upper part of Figure 7 shows the hash-based unit and the lower part shows the

TCAM-based unit. The extracted fields are forwarded to both units. Each unit

performs independent search on their own rule table and the search results are

combined by the priority encoder. Although the linear search unit is not shown in this

figure, it is also integrated with other units in the same way.

In the FlowCache, rules are partitioned into types based on specified and masked

fields in the rules. Each combination of specified fields forms a new type. The hash-

based unit supports pre-defined types. These types are hard-coded and it is not

possible to configure them after the bitstream generation. Similarly, the linear search

unit only supports the pre-defined types. The pre-defined types are encoded in their

rule table. These units are called as Exact Match Hardcoded (EMH). Rule type-

specialized matcher is also used interchangeably for EMH. On the other hand, the

TCAM-based unit supports the types which are configured on run time. These types

can contain arbitrary combinations of fields. The TCAM-based unit is called as Exact

Match Arbitrary (EMA). Generic matcher is also used interchangeably for EMA. The

combination of EMA and EMH provides us a matching circuit for OpenFlow 1.0 in a

memory efficient way. The implementation details are discussed below.

3.3.1 Hash-Based

This approach partitions the rule set according to the field that are specified or

wildcarded. The partitions are searched by using sequential hashing functions. The

hashing functions realize simple exact match searches over the partitions. Due to

sequential searches, the number of partitions are limited to four entry types. Although

this approach is scalable and memory efficient, it does not cover all the rules.

For each incoming packet, the extracted fields are selected based on four hard-

coded types. The concatenated fields are applied to four hash functions. The hash

functions reduce the information to 14 bits. The hashing function assure that the

results spread almost equally over the total range of 16384 values. The next step is

to use 14-bit hash results to address a hash table. A hash table entry is 9-bit wide

and stores a pointer to a rule table. A rule table entry contains matching fields for

each type. Finally, the matched rule table entry is compared against the original fields

to detect the hash collisions during lookup.

The four hard-coded types are searched sequentially in the hash-based unit. The

alternative is to search in parallel for each type. In the parallel approach, all the

resources (hash function, hash table and rule table) are duplicated for each type.

Since this approach introduces a lot of memory overhead, we selected the sequential

approach with four types.

When the control processor configures a new entry in the hash-based unit, it

calculates the corresponding hash value and configures the hash table entry and the

rule table entry. The hash table is introduced to reduce the probability of hash

collisions during the configuration. Without the hash table, the hash results are

directly mapped to the rule table. It means that 512 entries are randomly distributed

over 512 places. In this case, there are many collisions due to hashing. With the hash

table, the hash results are mapped to the 16384 hash table entries instead of 512

Page | 23

rule table entries. The expected number of collisions are reduced significantly by

introducing the hash table.

Figure 8: Example scenario for hash-based unit

Figure 8 shows an example scenario for the hash-based unit. In this example, the

hardcoded types are the following:

• Ingress port, source MAC address and destination MAC address for the first

type,

• Destination MAC address, ether type, VLAN ID and VLAN priority for the

second type,

• Source IP address, Destination IP address and IP protocols and L4 destination

port for the third type,

• Ether type, source IP address, destination IP address and IP protocol for the

fourth type.

As shown in Figure 8, the hash result results of third and fourth types point to invalid

hash table entries. Only two candidates are left after the hash table. Since the

matched entry for the first type has higher priority than the second one’s, Entry1 in

the rule table is selected as a matching entry. At the last step, the fields in matched

entry are compared against the original fields. If the comparison result is positive, the

FlowID information is forwarded to the priority encoder.

The hash-based unit can store a high number of entries. It scales well with number of

entries. The memory overhead is relatively small compared to other methods. On the

other hand, there are limited entry types which are pre-defined and cannot change on

run time. The rule set analysis in Section 3.5 justifies that most of the rules in practice

Page | 24

are mappable to the hash-based unit since the pre-defined types are selected based

on dominant rule types in the network.

3.3.2 Linear Search

Figure 9: Block diagram of linear search unit

Figure 9 shows the architecture of the linear search unit. The Collision table is

searched in a sequential manner. Each collision table entry is compared against the

original fields. If the comparison result is positive, the corresponding FlowID

information is forwarded to the priority encoder. In case of multiple matches in the

collision table, the one with the highest priority determines FlowID.

The linear search unit is used as a back-up unit in case of a collision in the hash-

based unit during configuration of an entry. When the control processor attempts to

configure an entry in the hash-based unit, the hash value of the desired entry is

calculated and checked if the corresponding hash table entry is free. If the entry is

already occupied, the control processor configures a free entry in the collision table. If

all entries in the collision table are already occupied, the TCAM-based unit can be

used as a back-up unit in case of collision in EMH. The size of the collision table is

selected as eight, which is the expected number collisions when configuring 512

entries in the hash based unit. The details are explained in the section of hash

collision analysis.

There are two different implementation options for a linear search unit. The one with

a single physical memory cannot be fully pipelined since there is only one memory

interface to access the entries. Other option is to use multiple physical memories to

access the entries simultaneously. Although this option is fully pipelined, it allocates

several BRAMs on FPGA. Therefore, our implementation allocate only one BRAM to

store the collision table entries. The linear search unit stores a low number of entries

due to the sequential search. Increase in the number entries cause the latency to

increase linearly. Therefore, it is only reasonable to use linear search method with

few entries.

Page | 25

3.3.3 TCAM-based

Like decomposition based approaches, the TCAM-based unit decompose the multi-

field search into individual single field searches. By using hash functions, it performs

independent searches on each packet field, then combine the results. TCAM

provides us the flexibility of masking any field. By this way, it is possible to define

unique types for each entry. The hash-based unit only supports 4 types, whereas the

TCAM-based unit allows 4K different rule types to be configured. In other words, all

the combinations of fields can be configured on run time in the TCAM-based unit.

The 12-tuple, which are the match fields of OpenFlow 1.0, are extracted and

forwarded to the TCAM-based unit. Independent hash functions are performed on

each field and the results are concatenated. The concatenated result is applied to the

TCAM as a key. If the applied key matches an entry in the TCAM, the entry location

is used as a pointer to the rule table. If there are multiple matches in the TCAM, the

one, which has lowest address, is selected. Finally, the fields in the matched rule

table entry is compared against the original field values. If the comparison result is

positive, the FlowID information is sent to the priority encoder. Otherwise, the TCAM-

based unit does not assign any classification result.

Dissimilar to the hash-based unit, the concatenation is performed after the hash

functions. By this way, the location information of each field is preserved although

some information is lost due to hashing. This allows us to mask any of the fields by

using masking feature of the TCAM. When the control processor configures an entry

in the TCAM-based unit, a free TCAM entry is configured with the mask field and the

key field and then the corresponding rule table entry is configured. For example, if the

control processor configures an entry that specifies only the ingress port and masks

all other fields, a free entry in TCAM is configured in a way that only ingress port is

used for matching by masking other fields. This type entries can be used to forward

flows from a physical port to a virtual port or vice versa.

Table 4: ID lengths of TCAM-based

Header Field Field Length (bit) ID length (bit)

Ingress Port 5 5

Source MAC address 48 8

Destination MAC address 48 8

Ethernet type 16 4

VLAN ID 12 4

VLAN priority 3 3

IP source address 32 8

IP destination address 32 8

IP protocol 8 4

IP type of service 6 3

L4 source port 16 4

L4 destination port 16 4

Total 242 63

Page | 26

Table 4 shows the header fields with ID lengths. ID is used interchangeably for a

hash result. The hashing functions compress the header fields from 242 bits to 63

bits. Indeed, the TCAM has 64-bit key, but one bit is reserved for IPv6 support, which

will be implemented in the future. Hashing function is not performed for ingress port

and VLAN priority fields because these header fields contain few bits.

When configuring the entries in the TCAM-based unit, the collisions in the address

space of TCAM key is also possible due to the nature of hashing. However, our hash

collision analysis shows that the probability is very low. There is no collision table to

resolve the configuration collisions in the TCAM-based unit.

Figure 10: Example scenario for TCAM-based unit

Figure 10 shows an example scenario for the TCAM-based unit. Ingress port and

VLAN priority fields are not hashed, so their IDs are same as their original values.

Other fields are hashed and then all results are combined as a key to the TCAM. This

key matches the TCAM entry that masks the 9 fields, which are shown in the figure.

In other words, this TCAM entry is configured by the control processor so that ingress

port, source MAC address and destination MAC address are specified. The

corresponding rule table entry stores only specified fields. Finally, the specified fields

in the rule table entry is compared against the original field values to detect lookup

collisions.

The advantage of the TCAM-based unit is capability of field masking. We can store

any rule that is arbitrary combinations of fields. The rule types can be changed on run

time by configuring the TCAM and the rule table. On the other hand, the TCAM

implementation on FPGA is not scalable with the number of entries. We could not

meet our timing requirements for the design that has more than 128 TCAM entries.

Page | 27

However, parallel TCAMs with pipelining can be used to store more than 128 TCAM

entries at the expense of latency.

3.4 TCAM Implementation

Ternary Content Addressable Memory (TCAM) is a specialized memory where each

bit can be “0”,”1” or “don’t care”. Random Access Memory (RAM) returns the value of

a given address, whereas TCAM returns the address of a given key value. For each

input key, it performs parallel searches over all stored values and finds the matching

entries. In TCAM, the location of matching words usually determines the priority in

case of a multiple matches. For example, the entry in the lowest address has the

highest priority in my TCAM implementation.

Figure 11: Different approaches for TCAM implementation

The key component for the TCAM-based unit is a ternary content addressable

memory. Therefore, we investigate different approaches for TCAM implementation to

meet our requirements. Figure 11 shows the investigated approaches in a

hierarchical graph.

Most of TCAMs are implemented as an application-specific integrated circuit (ASIC). I

called them hard TCAMs. Because it is not possible to change their specification after

manufacturing. ASIC-based TCAMs provides the search result in a single clock cycle.

They can work with high clock frequency. However, they are expensive and power

hungry. Moreover, their limited configurability does not fit the requirements of

OpenFlow packet classification. Since the key length and the number of entries are

fixed in ASIC-based TCAMs, they don’t provide required flexibility for multi-field

packet classification.

Unlike ASIC-based TCAMs, FPGA-based TCAMs provides the flexibility that is

required for OpenFlow packet classification. Since FPGA-based TCAMs are

reconfigurable, I call them soft TCAMs. Brute-force implementations mimic the ASIC-

based TCAM architecture. The words are stored in distRAM or registers and parallel

search over all stored words performed. They suffer from significant degradation in

an achievable clock frequency when the number of entries increase. Because, the

Page | 28

parallel search over all the words cause high fanout. In addition to this, priority

encoding increases the critical path in brute-force TCAMs.

Algorithmic TCAMs emulates TCAM behavior by employing various heuristic

methods. Various solutions have been proposed as alternative to TCAM [23].

Because of heuristic methods, their performance is not deterministic and it is often

dependent on the characteristics of the data set. On the other hand, Axonerve [24]

has deterministic latency and scales well with the number of entries. But, it is not

exactly equivalent to TCAM. There are limitations in the masking capability of

Axonerve. The details about Axonerve is discussed in the section of FlowCache with

Axonerve.

I implemented a RAM-based TCAM by using the Xilinx application note [25]. RAMs

are employed to emulate the TCAM behavior. This approach provides better timing

than brute-force approaches and thus it scales better with number of entries.

However, it consumes more memory and takes several clock cycles to configure an

entry. As a result, there is a trade-off between the achievable clock frequency and the

memory expansion for a RAM-based TCAM.

To analyze the structure of our TCAM we have the following definitions:

• The depth of a TCAM is equal to the number of entries and denoted as 𝑁.

• The width of a TCAM is equal to the key length and denoted as 𝑊.

• The address width of a RAM is denoted as 𝑑. Note that 𝑁 = 2𝑑 for the number

of entries in a RAM.

• The structure of a TCAM or a RAM is denoted as 𝑁 𝑥 𝑊. For example, 2x3

RAM consist of 2 words where each word is 3-bit.

The search operation in 𝑁 𝑥 𝑊 TCAM can be considered as mapping a 𝑊 bit input

key to 𝑁 bit match vector where each bit shows the match status of corresponding

entry. By using this idea, 𝑁 𝑥 𝑊 TCAM can be implemented by using a 2𝑊 𝑥 𝑁 RAM.

The input key is used as the address to access the RAM and each word stores a 𝑁

bit match vector.

Figure 12: 1x1 TCAM implementation by 2x1 RAM

As shown in Figure 12, 1x1 TCAM can be implemented by using a 2x1 RAM. The

first entry in 2x1 RAM is denoted by RAM[0] and the second one is denoted by

RAM[1]. TCAM[0] denotes the entry stored in 1x1 TCAM.

Page | 29

Table 5: A ternary bit in RAM

TCAM[0] RAM[0] RAM [1]

0 1 0

1 0 1

X 1 1

Table 5 shows how to map a ternary bit to 2x1 RAM. When don’t care bit (‘X’) is

stored, the match vector is always ‘1’ no matter the input 1-bit key is ‘0’ or ‘1’.

Although this approach is very scalable in terms of timing constraints, it requires huge

amount of memory for wide input keys. The memory requirement grows exponentially

with the key length. An alternative solution using multiple narrow TCAMs to

implement a wide TCAM. For example, a 𝑁 𝑥 2𝑊 TCAM can be implemented by

using two 𝑁 𝑥 𝑊 TCAMs. During lookup, a 2𝑊 input key is divided into two equal

segments. Each of narrow TCAMs matches segments of the key and outputs a 𝑁 bit

match vector. The two match vectors are then bitwise ANDed to obtain the final

match vector. By this way, the total memory requirement becomes 2𝑊+1 𝑥 𝑁 instead

of 22𝑊 𝑥 𝑁. The goal of populating multiple narrow TCAMs is to reduce the memory

requirements. On the other hand, bitwise ANDing the match vectors limits our timing

capability due to the long routing latency on FPGA. Additionally, the update time also

increases when adding extra narrow TCAMs.

Figure 13: 128x64 TCAM implementation by 16 128x16 RAM without update logic

Figure 13 shows our 128x64 TCAM implementation by using 16 separate RAMs.

Each RAM entry stores 128-bit matching vector. For each search operation, the input

key is divided into 16 equal segments. The small segments are used as pointers to

retrieve the stored matching vector information from the RAMs. The matching vectors

Page | 30

are ANDed and forwarded to the priority encoder. In case of multiple matches, the

priority encoder selects the one with the lowest address.

Updating the TCAM can be either adding or deleting a specific TCAM entry. Updating

the TCAM entry takes 16 clock cycles. Although all RAMs are updated in parallel, 16

entries for each RAM are updated at worst-case. However, searching only cost a

single clock cycle since it requires only a RAM access. The SRL16E [26] is used as a

memory unit in our implementation. The SRL16E primitive is mapped to SliceM LUT

in our FPGA.

Table 6: Results of TCAM implementations with different sizes

TCAM size
(depth x width)

Logic LUTs
(Util%)

Memory LUTs
(Util%)

Registers
(Util%)

Critical Path
(ns)

16 x 8 103 (0.08%) 64 (0.14%) 32 (0.01%) 5.083

32 x 16 167 (0.12%) 256 (0.55%) 111(0.04%) 7.853

32 x 64 383 (0.28%) 1024 (2.22%) 149 (0.05%) 8.656

128 x 16 412 (0.31%) 1024 (2.22%) 119 (0.04%) 9.486

128 x 64 661 (0.49%) 4096 (8.87%) 359 (0.13%) 10.200

128 x 64* 670 (0.50%) 4096 (8.87%) 359 (0.13%) 9.880

Table 6 shows the resource utilization of TCAM implementation with different sizes.

The timing results are also shown in the last column. The last column shows the

results with the area constraint. The area constraint is introduced to reduce the

routing delay. The results are provided for Artix-7 (xca200tfbg676i) with speed grade

-2 by using Vivado 2015.4.

In general, the resource utilization increase linear with the number of TCAM bits

stored. Each memory LUT is capable storing two TCAM bits. By comparing the

results of 32x64 and 128x16, I conclude that the increase in TCAM depth costs more

logic LUTs and less registers than the increase in TCAM width does.

Figure 14 shows the timing results for different TCAM sizes. The x-axis shows the

critical path and y-axis shows the corresponding TCAM configurations. The critical

path increases with the number of bits stored in TCAM. In other words, the design

does not scale well with the number bits due to the degradation in achievable clock

frequency. The TCAM that stores more than 128 entries did not meet our timing

results and thus did not result in a usable design.

The clock of TCAM is 100 MHz clock whose period is multiple of 200 MHz data path

clock. This frequency is selected to work with aligned clocks. As shown in Table 6,

the TCAM design with the area constraint meet the timing requirement. Synchronous

clock domain crossing is implemented between 200 MHz data path clock and 100

* The design is implemented by creating area constraint to reduce routing congestion. The area
constraint is realized in FPGA by drawing pblock.

Page | 31

MHz TCAM clock. The TCAM entries are configured by the control processor via a

memory-mapped interface (MMI). Asynchronous clock domain crossing is also

implemented between 125 MHz MMI clock and 100 MHz TCAM clock.

Figure 14: Timing results for different TCAM sizes

Input and output registers are also added to the TCAM design to decouple the critical

path from the rest of design. They add more latency to the latency of the TCAM-

based unit. However, the design is pipelined. New input can be applied to the TCAM-

based unit in each 2 clock cycles because of the clock domain crossing between the

data path clock and the TCAM clock.

3.5 Rule Set Analysis

Network devices has evolved to accommodate a variety of services, including real-

time video communication, sensor networking and computer-to-computer

communication. Depending on the applications, the characteristics of rule sets can

vary significantly. For example, edge routers usually deal with exact matches

whereas core routers usually deal with prefix matches. Since the optimal packet

classification method also depends on the characteristics of rule set, we analyze the

characteristics of rule sets that are deployed in a data center. Due to security issues,

Page | 32

access to real rule sets is not possible for our research. Therefore, we used synthetic

rule sets which model the properties of a real rule set.

Classbench [27] has been widely used to evaluate packet classification algorithms. It

generates only synthetic Ipv4 rule sets. These sets are designed according to

traditional packet classification. FRuG [28] also generates rule sets by using user

inputs. The user has full control over the properties of rule sets. Although it is

possible to generate OpenFlow rules with FRuG, we could not generate accurate rule

sets which models the properties of real ones. We used Classbench-ng [29] to

generate OpenFlow 1.0 rule sets. The tool also provides 2 different seeds which are

based on an in-depth analysis of OpenFlow deployment in a data center. The seeds

contain the relevant statistics and probability distributions. By using these seeds, it is

possible to generate accurate OpenFlow 1.0 rules whose characteristics are similar

to the real ones.

Figure 15: Block diagram of rule set analysis

Figure 15 shows the block diagram of rule set analysis. The OpenFlow seed specifies

the statistical properties of the matching fields for OpenFlow 1.0. The statistical

properties are based on a set of OpenFlow switches running in a data center

environment. There are two OpenFlow seeds provided by the tool: “of1_seed” and

“of2_seed”. For our analysis, we use “of1_seed”. Classbench-ng accepts the input

seed and the user configuration file which specifies the structure and the size of rule

tables. It outputs a rule set as close as a real rule set. In order to do accurate

analysis, 10000 rule sets are generated. Each rule set has 1K OpenFlow rules. Since

VLAN fields and IP type of service field are not used by the input parameter file, the

output rules have 9 packet header fields which are specified by OpenFlow 1.0.

My analysis code, which is written in Python, extracts the characteristics of synthetic

rule set. Our goal is to understand certain features of OpenFlow rule sets to optimize

our packet classification method. Although the network configuration plays a key role

for the rule sets, it is possible to analyze some statistical distributions by using

synthetic rules sets, such as OpenFlow rule type distribution and IP prefix length

distribution.

Page | 33

Figure 16: Header field distribution in the rule sets

Figure 16 shows the distribution of header fields which are specified or masked in the

rule sets. The x-axis shows 12 OpenFlow header fields and the y-axis shows the

distribution of them. For example, 90 percent of the rules specifies destination MAC

address and 10 percent of them does not have destination MAC address. It means

10 percent of them mask the destination MAC address. Since the analyzed network

configuration does not use virtual LANs and differentiated service for IP, VLAN id,

VLAN priority and IP type of service fields are never used in the rules. Although the

header field distributions depend on the network configuration, I believe that this

analysis is important to understand the difference between OpenFlow rules and the

rules that are used by traditional packet classification. OpenFlow allows fine-grained

rule declaration. In other words, any combination of fields can be defined as an

OpenFlow rule.

I also analyze the relationship between header fields in the rules. It is important to

analyze which fields are more likely to be specified together in a rule. I have the

following definitions which are introduced by [29]:

• Rule type is a template that indicate which headers fields are specified by a

rule. In theory, there are 4096 possible different rule types in OpenFlow 1.0

since OpenFlow 1.0 classify packets using 12 fields.

• Rule type number is a 12-bit number where each bit corresponds a header

field. If the bit is set to ‘1’, the corresponding field is specified by this rule.

Page | 34

Otherwise, the field is masked by the rule. The bits are associated the fields

in the following order: in_port, mac_src, mac_dst, eth_type, vlan_id,

vlan_prio, ip_tos, ip_proto, ip_src, ip_dst, l4_src and l4_dst. The most

significant bit refers to in_port and the least significant bit refers to l4_dst.

For example, “0000000000001100” bit vector (rule type 12) refers to the

combination of IP destination and source addresses. Other 10 fields are

masked in this rule type.

Figure 17: Rule type distribution in the rule sets

Figure 17 shows the result of my rule type analysis. The x-axis represents the rule

type number with the encoding defined above and the y-axis represents the

distribution of rule types. For example, rule type 789 refers the rules that specifies

mac_dst, eth_type, ip_proto, ip_dst and l4_dst. 20 percent of the rules are

represented by rule type 789. Although there are 4096 possible rule types, only small

number of rule types are used in practice. Indeed, four of them are the most common

ones. I exploit this observation to design the FlowCache. The most 4 common rule

types are stored in a memory efficient data structure, whereas other rule types are

supported by a flexible data structure.

The rule type distribution heavily depends on the network configuration. Therefore,

the most common rule types vary from one network to the other. By monitoring the

rule type distribution for a network, the most used rule types can be easily

determined. If the rule type distribution change significantly over time, the analysis

should be repeated to find the four most used rule types. When the network policy

Page | 35

changes significantly, the FlowCache should be generated again so that the four

most used rule types are mappable to the rule type-specialized matcher (EMH).

The rule type definition is same as the type definition in the FlowCache. The

FlowCache partition the rules into types based on the specified fields in the given rule

set. Each combination of 12-tuple forms a new type.

As discussed in search unit section, the FlowCache consist of two parts: Exact Match

Hardcoded (EMH) and Exact Match Arbitrary (EMA). EMH is designed to support

only four types, whereas it is possible to map all types to EMA. EMH can store a high

number of entries without significant memory overhead. The four most common rule

types are mapped to EMH and the rest of rule types are mapped to EMA. EMH rule

types are shown in Table 7. The rule types, which are not shown in Table 7, are

mapped to EMA. The EMH entry types are optimized for the network that I analyzed.

The rule types should be changed for a different network so that the most rule types

can be supported by EMH.

Table 7: EMH entry types

EMH type Rule type number Header fields

Type 1 796 mac_dst, eth_type,
ip_proto, ip_src, ip_dst

Type 2 789 mac_dst, eth_type,
ip_proto, ip_dst, l4_dst

Type 3 524 mac_dst, eth_type, ip_dst

Type 4 512 mac_dst

Figure 18: FlowCache entry types in the rule sets

Page | 36

Figure 18 shows the distribution of EMH entry types and the distribution of EMA

entry types in the analyzed rule set. When the four most common rule types are

mapped to EMH, EMH can store 88 percent of rules. By this way, we can cover most

of the practical scenario in EMH. The rest of rules are mapped to EMA. This analysis

justifies the idea of our packet classification method. By combining the rule type-

specialized matcher (EMH) and the generic matcher (EMA), OpenFlow rules can be

stored on FPGA in an efficient way.

Figure 19: Match type distribution of IP destination and source addresses in the rule sets

As shown in Figure 19, IP fields are mostly specified by exact match in the rule sets.

These types of matches are directly mapped to the FlowCache. Since the FlowCache

also supports field masking, the rules that does not specify IP fields are also

mappable to the FlowCache without further processing. However, the rules that

contain any prefix match are not directly mapped to the FlowCache. The control

processor converts prefix matches to exact matches based on the active flows in that

time. The converted rules are mapped to the FlowCache. Our analysis shows that

only 1-2 percent of rules contain prefix matches in the rule sets.

3.6 Hash Collision Analysis

Since EMH (hash-based) and EMA (TCAM-based) use hashing functions to

compress the packet header fields, hash collisions are inevitable. The purpose of

hash collision analysis finds out the expected number collisions during configuration

of entries in the FlowCache. Based on the expected number of collisions, the backup

unit is designed to compensate for the hash collisions.

When the control processor configures a new entry in EMH, the hash value for the

entry is calculated and the corresponding entry is checked whether it is free or not. If

the hash result collides with one of the stored entry, the hash table entry is occupied.

In this case, the entry is added to the collision table. The size of the collision table is

Page | 37

adjusted based on the expected number of collisions in EMH. The hash table is

introduced to reduce the probability of collisions. Similarly, the hash results for each

field are calculated to configure a new entry in EMA. If there is a TCAM entry

matching with a new entry, the new entry collides with the old one. In this case, the

new entry cannot be added to EMA without deleting the old one. However, our

experimental analysis shows that the probability in EMA is so small that it does not

affect the performance of EMA.

There are also hash collisions during lookup operation in EMH and EMA. When

packet headers are hashed, some information is lost due the nature of hashing. A

packet might match a wrong rule table entry after the hashing function. However, the

collisions during lookup are detected by comparing the matched rule table entry

against the original packet headers. If the comparison result is negative, the packet is

not classified in the FlowCache.

3.6.1 Analytical Analysis

Hash collisions can be modeled by the birthday paradox [30]. In a set of randomly

chosen people, some pair of them might have the same birthday. The birthday

paradox analysis focus on the probability of having the same birthday. The expected

number of people having the same birthday can be calculated by the following

formula:

∑ 𝑞(𝑘 − 1; 𝑑) = 𝑛 − 𝑑 + 𝑑
(𝑑 − 1)𝑛

𝑑𝑛

𝑛

𝑘=0

• 𝑛 is the number of people.

• 𝑑 is the number of days in a year.

We can adapt the formula for the expected number of collisions in EMH by making

some fair assumptions. Assuming that 512 EMH entries are randomly distributed

over 16384 hash table entries, we can calculate the expected number of collisions by

using the above formula with the following parameters:

• 𝑛 is the number of entries in EMH, which is 512.

• 𝑑 is the number of entries in the hash table, which is 16384.

The expected number of collision in EMH is calculated as 7.9 when configuring 512

entries where the hash result is 14-bit length. The assumption we made is that the

hash results are spread with equal distribution over hash table entries. In practice,

there are dependencies between the hash results.

The same analytical analysis for EMA does not give a meaningful result because the

entry configuration with masking fields introduce huge dependency between the hash

results.

Page | 38

3.6.2 Experimental Analysis

Figure 20: Block diagram of experimental analysis for hash collision

Figure 20 shows the block diagram of the experimental analysis. The setup of the

experimental analysis is almost same as the setup of the rule set analysis. The rule

set analysis module is replaced with the FlowCache model. This module implements

hashing functions and storage of rules in the same way that the FlowCache does. In

other words, the FlowCache is implemented in VHDL for FPGA, the FlowCache

model is implemented in Python to emulate the behavior of FlowCache for hash

collision analysis. This experiment is repeated 10000 times to get more realistic

results.

Figure 21: (a) Collision histogram for EMH when configuring 512 entries (b) collision histogram
for EMA when configuring 128 entries

The entries types in Table 7 are mapped to EMH by using the synthetic rule sets.

This experiment is repeated 10000 times and the number of collisions are recorded

when configuring table entries for each experiment. Figure 21(a) shows the collision

histogram for EMH when configuring 512 entries with 14-bit hash length. For

example, 15 percent of the experiments end up with 7 collisions for the configuration

of 512 EMH entries. By averaging the experimental results, the expected number of

collisions is calculated as 7.95 for 512 EMH entries and 14-bit hash length. The

theoretical and experimental results for EMH converges to each other. This justifies

that the hash results, which are generated with our hashing function, are randomly

distributed over the hash table entries for the synthetic rules.

Figure 21(b) shows the collision histogram for EMA when configuring 128 entries

where the hash length is 64-bit. The entry types that cannot be mapped to EMH are

Page | 39

mapped EMA in this experiment. When the control processor configures a new entry

in EMA, the collisions happens in the address space of the TCAM key. If the new key

with its masking fields matches with the one of existing entry in the TCAM, it is

recorded as an EMA collision. By averaging the number of collisions in EMA, the

expected number of collisions is calculated as 0.45 for 128 EMA entries where the

TCAM key length is 64-bit. We conclude that the probability of collision in EMA is

very low, it does not affect the performance of EMA severely.

Figure 22: Expected number of collisions with respect to hash length and hash type when (a)
configuring 512 EMH entries and (b) when configuring 128 EMA entries

I repeated the hash collision experiment for different hash lengths and hash types to

find the optimal configuration. Figure 22 shows the expected number of collisions of

EMH and EMA for different hash lengths and hash types. The y-axis shows the

expected number of collisions and the x-axis shows the hash length. “HashType0” is

implemented by XOR functions without bit shuffle, which is the default one.

“HashType1” is implemented by XOR functions with bit shuffle. The bit shuffle is

introduced to add randomization to hash functions. However, the results show that

the bit shuffle does not decrease the expected number of collisions. The expected

number of collisions can be decreased by increasing the hash length. Since the hash

results are mapped to bigger address space, the probability of collision decreases

with the increase in hash length. The FPGA implementation has 14-bit hash results

for EMH and 64-bit hash results for EMA.

Page | 40

Figure 23: Expected number of collisions with respect to number of entries in EMH and EMA

Figure 23 shows the expected number of collisions for different tables sizes of EMH

and EMA. The y-axis shows the expected number of collisions and the x-axis shows

the number of entries. As shown in the figures, the expected number of collisions

increase linear with the number of entries stored in EMH and EMA. 512 EMH entries

and 128 EMA entries are selected as the default table sizes.

3.7 Evaluation

This section is divided into two subsections:

• FlowCache Results: The latency of each module in the FlowCache is

analyzed. The resource utilization on FPGA is shown in this subsection.

Moreover, the throughput and the power consumption are given. All the

analyses are done for default table sizes, which are 8 linear search entries,

128 TCAM-based entries and 512 hash-based entries.

• Search Units Results: The search time of hash-based, linear search and

TCAM-based units are compared for different table sizes. The throughputs of

search units are also calculated based on their pipeline implementation.

Page | 41

3.7.1 FlowCache Results

Table 8: Latency results of modules in FlowCache

Module Latency (CC) Latency (ns)

Parser 9 45

Hash-based 11 55

Linear Search 11 55

TCAM-based 10 50

Priority Encoder 2 10

Data Pipeline 24 120

NoC Action Unit 5 25

Table 8 shows the latency results of main modules in the FlowCache. This analysis is

done for default table sizes. Although the lookup modules have varying latencies,

their latencies are comparable to each other. In order to keep the design simple, the

output of TCAM-based unit is delayed for one clock cycle so that the outputs of

lookup modules are aligned.

Figure 24: Block diagram of FlowCache with latency analysis for default table sizes

Figure 24 shows the latencies of each module on the block diagram. The parser

waits for the relevant header fields to extract the information from incoming packets

and then triggers the search units. Hash-based and linear search units give the

results after 11 clock cycles, whereas TCAM-based unit give the result after 10 clock

cycles and wait for 1 clock cycle to align with other search units. The priority encoder

is pipelined with registers to meet our timing requirement, so the priority encoding

takes 2 clock cycles. The delay pipeline consists of two units, the one delays AXI

input for 22 clock cycles and the one assigns the FlowID information to

Page | 42

corresponding packets. Finally, the NoC action unit modifies the NoC header in 5

clock cycles.

Table 9: Latency, throughput, and power dissipation of FlowCache with default table sizes

Latency (ns) Throughput (Gbps) Power Dissipation (W)

145 12.8 0.320*

Table 9 shows overall latency, throughput, power dissipation of the FlowCache,

which works with 200 MHz clock. The overall latency of FlowCache is 29 clock

cycles, which is equal to 145 ns. The AXI input and output interfaces have 64-bit

data. The FlowCache is designed for the worst case, which is there is no gap

between the segments in the data path. Therefore, the FlowCache supports 12.8

gigabits per second. The power dissipation of FlowCache is 0.32 Watt according to

the implementation results in Vivado 2015.4.

Table 10: Resource utilization of FlowCache with default table sizes

Resource Type Used Available Utilization (%)

LUTs 5932 134600 4.41

Registers 3116 269200 1.16

BRAM tiles 22.5 365 6.16

Table 10 shows the resource utilization of FlowCache based on the implementation

results in Vivado 2015.4. Target device is Artix-7 (xca200tfbg676i). These results

justify that multiple FlowCache can be easily used in this size of FPGA. By using

multiple instances of FlowCache in parallel, the throughput can be increased.

Moreover, Sequential lookup tables can be implemented by cascading FlowCache

instances.

BRAM tiles are used by the hash-based unit and the linear search unit. By analyzing

the relative utilization of BRAM tiles, I conclude that EMH can store up to 8K

OpenFlow rules by using BRAMs in our FPGA. Similarly, EMA is based on memory

LUTs since our TCAM implementation stores the entries by using SRL16E primitives

in FPGA. By comparing the relative utilization of TCAM in Section 3.4, I conclude that

EMA can store up to 1K entries in our FPGA. The bottleneck for scalability of EMA is

the timing constraints in TCAM. This problem can be solved by pipelining and using

multiple TCAM instances in parallel at the expense of latency.

* The power dissipation value is taken from the power dissipation report of Vivado 2015.4. It should be
taken with a grain of salt because they don’t show realistic power dissipation values.

Page | 43

3.7.2 Search Units Results

Figure 25: Latency results of search units for different table sizes

Figure 25 shows the latency results of hash-based, TCAM-based and linear search

with respect to the number of entries. Our TCAM implementation does never meet

our timing requirements for more than 128 TCAM entries. Therefore, the maximum

number of entries is 128 in the figure. Moreover, the latency of linear search is not

comparable to others for more than 128 linear search entries.

As shown in Figure 25, hash-based unit has a constant latency, which is equal to 55

ns. The TCAM can work with 200 MHz clock for 8,16 and 24 entries, so clock domain

crossing is not required. The latency for these sizes is 35 ns. The clock frequency of

TCAM is selected as 100 MHz to align with 200 MHz data path clock for more than

24 TCAM entries. The latency increases to 50 ns for more than 24 TCAM entries.

The latency of linear search with 8 entries is 55ns, which is equal to the latency of

hash-based unit. The latency of linear search increases linear with the number of

entries. I conclude that linear search is only reasonable for small table sizes. The

latencies of search units should be comparable to each other in order to use them in

parallel. Thus, 8 entries in the linear search unit, 128 entries in TCAM-based unit and

1024 entries in the hash-based unit are implemented on FPGA.

Page | 44

Figure 26: Throughput results of search units for different table sizes

Figure 26 shows the throughput results of search units for different table sizes. The y-

axis shows the throughput in terms of million packets per second (Mpps) and the x-

axis shows the number of entries.

Hash-based unit can accept new search request in each four clock cycles. Because it

is not fully pipelined due to four different entry types. The alternative is to use multiple

hash tables and rule tables to search in parallel for each entry type. TCAM-based unit

is fully pipelined for 8,16 and 24 entries and can accept new input in each clock

cycle. However, it accepts new input in each 2 clock cycles for more than 24 entries

due to the clock domain crossing. There are two different alternatives for linear

search implementation. The linear search unit sharing resources stores the entries in

a single BRAM, whereas the one with separate sources stores each entry in different

BRAMs on FPGA. Since the physical memories are limited on FPGA, the resource

sharing is required for FPGA designs. The throughput of the one sharing resources

decreases with the number of entries. On the other hand, the one with separate

sources has constant throughput. The linear search unit is implemented with 8

entries, which are stored in a single BRAM. The hash-based unit stores 512 entries

on FPGA and the number of entries can be increased in the hash-based unit without

sacrificing the performance. The TCAM-based unit stores 128 entries on FPGA. The

bottleneck is the TCAM implementation that does not scale with the number of

entries.

Page | 45

4. TrustNode as OpenFlow Switch

4.1. Architecture

Figure 27: TrustNode as an OpenFlow switch

As shown in Figure 27, TrustNode can be used as an OpenFlow switch. It consists of

two main parts, the OpenFlow accelerator implemented in the FPGA and the

OpenFlow agent in the control processor. There are 3 main functional units in the

FPGA for the accelerator, which are match unit, action unit and statistics collection

unit. In the control processor, Open vSwitch implements the OpenFlow protocol and

stores the flow tables that are configured by a OpenFlow controller. The mapping

software maps flow table entries from Open vSwitch to the accelerator on FPGA.

It is a hardware-software co-design approach for an OpenFlow switch. High

performance data processing is done in the FPGA, while complex OpenFlow protocol

implementation and big flow tables can reside in the processor. In other words, the

hardware accelerator offloads the control processor for packet processing and the

control processor is mainly responsible for management functions.

Page | 46

Figure 28: Slow path and fast path in TrustNode

The goal of hardware acceleration is to improve the average performance of packet

classification in TrustNode. The idea is that active and elephant flows are forwarded

by the FPGA without interrupting the processor. In the fast path, the packets entering

the FPGA from one of the Ethernet ports are processed on the FPGA and forwarded

to another Ethernet port. If the packet header fields do not match any of flow table

entry in the FPGA, they are forwarded to the control processor. These packets go to

the slow path in TrustNode. The slow path and the fast path are shown in Figure 28.

4.2. Software

4.2.1. Open vSwitch

Open vSwitch [32] is a software switch with OpenFlow support. The main advantage

of software switches is that they can be upgraded more easily than hardware

switches. It is designed for flexibility and general-purpose usage. It is not possible to

achieve high performance without sacrificing generality. Therefore, we combine the

FlowCache and Open vSwitch to obtain a flexible and high performance OpenFlow

switch.

Figure 29: Components of Open vSwitch [5]

Open vSwitch consist of two major components for packet forwarding, which are a

userspace module and a kernel datapath module. The userspace module (ovs-

Page | 47

vswitchd) implements the OpenFlow protocol and communicates to a OpenFlow

controller. OpenFlow tables are stored in the userspace module. The kernel datapath

module is designed to accelerate packet classification by caching active flows. Figure

29 depicts how the packet classification is implemented in Open vSwitch. The kernel

datapath module receives the packets from a physical port and forward them directly

to another physical port if the packet header matches the flow cache in kernel.

Otherwise, the userspace module determines how to handle the packet and it passes

the packet back to the datapath.

OpenFlow controller specifies how to handle packets in Open Vswitch. It is

specialized for flow-based control of a switch. It does not add or remove ports,

configure QoS queues, etc. However, this type of configurations can be changed

over the OVSDB protocol [33] as shown in Figure 29.

Figure 30: Open vSwitch forwarding model with microflow cache and megaflow cache [34]

As shown in Figure 30, flow caching in kernel module is implemented by using 2-level

cache. The primary cache is the megaflow cache, which is structured like OpenFlow

table. It might have sequential lookup tables and prefix matches. When a packet hits

in the megaflow cache, the packet is processed faster than the round trip from

userspace to kernel. However, a lookup in the megaflow cache is still slower than the

secondary cache, named microflow cache. The microflow cache uses a hash table

with exact matching. Therefore, it is possible to map the microflow cache entries to

the FlowCache. The entries in the microflow cache provides us the following features:

• There is no priority between the entries. Overlapping entries are handled in the

megaflow cache. Thus, clear discrimination between flows are already

guaranteed in the microflow cache.

• Open Vswitch optimizes the flow caching in a way that active flows are stored

in the microflow cache.

Our goal is map the microflow cache entries to the FlowCache. Since the entry types

are same, further processing is not required. The alternative is to map the entries

from the megaflow cache or from the userspace module of Open vSwitch. In this

case, extracted flow table entries should be processed to resolve the dependency

problem between rules. The mapping should consider the semantics of network

policy. For example, an entry cannot be mapped if there is a more prioritized

Page | 48

overlapping entry in the flow table. Otherwise, the semantics of networks are not

preserved. Naga et al. [35] propose algorithms to decide which rules to cache while

preserving the semantics of original flow table.

4.2.2 Mapping Software

The connection between the FlowCache and the Open vSwitch is realized by a

mapping software. Our goal is map the following flows:

• active flows,

• flows with low latency requirement,

• flow with a high data rate (elephant flows), like video streaming,

• flows with the highest match priority.

The rest of flows are mapped only with best effort. The mapping software uses the

PCIe driver to access to flow table entries on FPGA.

Figure 31: Flowchart of mapping software API

Page | 49

We wrote an application programming interface (API) for the mapping software.

Figure 31 shows the flowchart of mapping software API. The extracted flow table

entries from Open vSwitch are first added to the master table that is a shadow

memory of entries in the FlowCache. The action table is updated with new entry. If

the entry is one of the EMH type, it is added to EMH. In case of hash collision in the

hash-based unit, the new entry is added to the linear based unit. If the entry is not

one of the EMH types, it is added to the TCAM-based unit. If there is not free entry in

the linear search unit, the TCAM-based unit can be used as the collision table of the

hash-based unit.

It is important to preserve the semantics of original flow tables that are specified by

the OpenFlow controller. Therefore, the mapping software should assure that the

FlowCache does not take any wrong action on incoming packets. The current

mapping software extracts the entries from the userspace module of Open Vswitch.

Since there are overlapping entries in the extracted entries, the dependency between

rules should be analyzed before mapping them to the FlowCache on FPGA.

Otherwise, incoming packets can match low prioritized rules in the FlowCache

although there are high prioritized matching rules in the control processor.

4.3 Hardware

I use a complete packet processing infrastructure in the FPGA. The FPGA design

contains a configuration that extends the basic functionality of a network interface

card by routing packets internally. The main function of the FPGA design is to offload

the processor for OpenFlow packet processing.

Figure 32: OpenFlow switch architecture of TrustNode

Page | 50

Figure 32 shows an example TrustNode architecture with three physical port and one

virtual port, which is used for the control processor. The upper part shows the design

in the FPGA and the lower part shows the processor subsystem. The FPGA design

consist of register pipelines which forwards packets from left to right and modifies

them on the fly. All packets are stored in the traffic manager. Rx and TX in the figure

denotes receive and transmit parts of Ethernet PHYs. The control processor is

attached as a virtual port via PCIe interface. Ingress processing and egress

processing are responsible for packet processing. Packets entering the device from

the network are processed in egress. Egress units process packets exiting the device

to the network.

Figure 33: Screenshot of the logic distribution with the FlowCache design highlighted

Figure 33 shows the screenshot of the logic distribution by using Vivado 2015.4. The

FlowCache logics are highlighted by red in the figure. The design includes the

complete packet processing infrastructure that includes the traffic manager, receive

and transmit MAC units, header creation units, header termination unit etc.

Page | 51

There are three main components of the OpenFlow switch design on FPGA:

• The FlowCache resides in the ingress processing. It performs packet

classification based on multiple packet header fields. The flow table entries are

configured by the control processor. The FlowCache also includes the NoC

action unit, which modifies the NoC header of incoming packets. It is used for

dropping the packets or forwarding to any physical port or any virtual port. If

there is no match in the FlowCache, the packet is forwarded to the control

processor.

• The counters are used to record the conditions of flow table entries in the

ingress processing. The number of received packets and received bytes are

maintained per FlowID and per port. After the FlowCache identifies the

matching flow table entry, the counters are updated based on the inserted

FlowID information.

• The TX router resides in the egress processing after the traffic manager. Its

main function is to modify packet header fields. It takes the associated actions

based on the FlowID information coupled with packets.

Figure 34: Parallel modules with shared pipeline [31]

As shown in Figure 34, there are three modules attached in parallel in the data path.

They share the same register pipeline to reduce resource consumption on FGPA.

The pipeline length is long enough for the module with the highest latency. The

FlowCache is attached to the Ethernet switch module and the special case unit in

parallel. The Ethernet switch unit use the standard learning, flooding and aging

methods for Ethernet bridging. The special case unit marks the packets with

unsupported protocols on FPGA, like ARP, ICMPv6 etc. These types of packets are

Datapath Module with Extensions

Function A Function B
Reg.
Reg.
Reg.
Reg.
Reg.
Reg.
Reg.
Reg.

Parsing Parsing

Modification

Modification

Decisions

Decisions

Lookup

Memory

Function C

Parsing

Modification

Decisions

Arbitration/Combination
Data Removal & Re-Alignment

Page | 52

forwarded to the control processor, which implements complex and widely diverse

protocols at a low speed. The special case unit has the highest priority between the

data path modules. If the special case unit detects a packet with unsupported

protocol on FPGA, the classification result in the FlowCache become invalid to not

take wrong actions on the packet.

In the TrustNode architecture, there are two identical data paths to support worst

case traffic. Therefore, two instances of the FlowCache will be used to enable SDN

offloading for all ports. It is important to keep the flow table entries consistent to each

other. The control processor configures both FlowCache together. The alternative is

that two instances of the FlowCache share the same memory units for flow table

entries. In this case, there is no synchronization problem between two instances of

the FlowCache. Since FPGA offers dual-port BRAMs, this alternative also reduces

the memory consumption. While one of them is performing lookup operation, other

FlowCache can access to the BRAM by using the second port. On the other hand,

two of the BRAM ports are used for lookup operation. When the control processor

configures a new entry in the FPGA, one of the data paths cannot be served by

associated FlowCache instance. This problem can be solved by storing the

configuration information. The stored configuration can be executed when there is no

lookup operation in one of the FlowCache. The access pattern to memory in the

FlowCache is deterministic and there are idle time slots. Therefore, two instances of

the FlowCache can share the same memory unit without sacrificing the performance

of packet classification.

Page | 53

4.4 Test Setup

It is important verify the correctness of an OpenFlow switch. Substantial research has

been carried out in this direction. OFLOPS [38] is an open and generic software

framework that permits the development of test for OpenFlow switches. It generates

benchmark packets and measure the latencies. It can be also used to evaluate

different OpenFlow switch implementations in terms of OpenFlow protocol as well as

their performance. The OFLOPS software is used with specialized hardware of the

NetFPGA-1G platform. OFLOPS-Turbo [39] improved the framework for the

NetFPGA-10G platform and provides support for 10GbE traffic generation and packet

capture.

Since there are still missing parts for fully functional OpenFlow switch feature of

TrustNode, I tested the packet classification in the FPGA with the mapping software

API by using my own test setup.

Figure 35: Test setup

Figure 35 shows the setup with our target platform, TrustNode. The test bitstream is

loaded into the FPGA. The flow table entries in the FlowCache are configured by

using the mapping software API. The control processor is running with our drivers to

control the data plane. In this test setup, there is no OpenFlow controller, so the

configuration of flow table entries is done manually by test scripts.

Page | 54

Figure 36: Screenshot of packet generator

Test packets are generated by using the network traffic generator [36]. Figure 36

shows the screenshot of the packet generator. The test packets have various

protocols, such as IPv4, IPv6, TCP, UDP etc. VLAN-tagged packets are also

generated to test different packet formats.

Figure 37: Screenshot of packet captures

The tests packets are processed by the TrustNode FPGA. Depending on the flow

table configuration, some of them are dropped by the FPGA and some of them are

forwarded to different physical ports. The output packets are captured by the network

traffic analyzer [37]. Figure 37 shows the screenshot of captured packets.

Functionalities of the FlowCache and the mapping software are verified by manual

inspection on captured packets.

Page | 55

5. FlowCache with Axonerve

5.5.1 Axonerve Introduction

Axonerve [24] is a memory based algorithmic TCAM emulation on FPGA. The

algorithmic solution provides us high-speed and low-latency content matching on

FPGA. Since it has fully pipelined design, it can perform continuous search operation

with deterministic latency.

One of the application area of Axonerve is multi-field packet classification. It supports

field masking for n-tuple header field. Moreover, the entries in Axonerve has a priority

field. It is possible to add new entries without changing the matching order of existing

entries in Axonerve.

There are two operation modes of Axonerve, which are on-chip memory mode and

off-chip memory mode. In on-chip memory mode, the entries are stored in BRAMs on

FPGA, while the entry table in off-chip memory mode is stored in an external DDR

memory.

Figure 38: Hardware resource requirements (relative to Virtex7 xc7vx690) for different sizes of
Axonerve [24]

Unlike other TCAM implementations on FPGA, Axonerve scales well with the number

entries. Figure 38 shows the hardware resource requirements of for different sizes of

Axonerve. The y-axis shows the resource utilization relative to the target FPGA and

the x-axis shows the entry depth. The LUT usage and the register usage are almost

constant over the graph. Since the table entries are stored in BRAMs on FPGA, the

BRAM usage increases linear with the entry depth.

On the other hand, Axonerve is not exactly equivalent to TCAM. It has some

limitations in masking capability. Unlike TCAM, predefined fields can be masked in

Axonerve. Moreover, data slice assigned to the first field cannot be masked. This

restriction conflicts with the fine-grained rule specification of OpenFlow. Since each

field can be either specified or masked, the rules that masked the first field cannot be

mapped to Axonerve.

Page | 56

5.5.2 Axonerve Integration to FlowCache

One of the important evaluation metrics is scalability of table sizes with the number of

entries. Although the hash-based unit scales well with the number of entries, the

TCAM-based unit suffers from achievable clock degradation for large-scale designs.

Therefore, it is not possible to store a high number of entries in the TCAM-based unit.

We got a trial version of Axonerve IP to replace our TCAM implementation. Our

configuration can store up to 1024 entries with 83-bit key length. It has 12 cycles

search latency with a fully pipelined design. We managed to work with 200 MHz

clock, which is used in the data path.

Table 11: Field ID assignment of Axonerve

Field ID Field Length (bit) Mask Capability

Ingress Port 5 No

Source MAC address 8 No

Destination MAC address 20 Yes

Ethernet type 4 No

VLAN ID 4 No

VLAN priority 3 No

IP source address 8 No

IP destination address 8 No

IP protocol 4 No

IP type of service 3 No

L4 source port 4 No

L4 destination port 4 No

Axonerve offers field masking for predefined bit-fields. Table 11 shows the field

assignments in our trial version of the Axonerve IP. For search operation, the masked

fields in the entry table match any value of corresponding fields of incoming packets.

There is a special field without masking capability, which is called as the open field of

Axonerve.

As shown in Figure 16, destination MAC address is the most specified fields

according to my rule set analysis. It is specified in the 90 percent of rules and

masked in the 10 percent of rules. By assigning the hash result of destination MAC

address to the open field in the Axonerve, the Axonerve-based unit can cover most of

the rules. The rules which mask destination MAC address cannot be mapped to the

Axonerve-base unit. Therefore, the Axonerve-based unit does not support all the rule

types.

Page | 57

Figure 39: Block diagram of FlowCache with Axonerve

In the Axonerve-based unit, the TCAM is replaced with the Axonerve. Figure 39

shows the block diagram of FlowCache with Axonerve. Like the TCAM-based unit,

the 12-tuple are hashed and the hashed results are concatenated. The concatenated

result is applied to the Axonerve as a key. If the applied key matches an entry in the

Axonerve, the entry location is used as a pointer to the rule table. If there are multiple

matches in the Axonerve, the priority function in the Axonerve determines which one

should be selected out of multiple matches. Finally, the fields in the matched rule

table entry is compared against the original field values. If the comparison result is

positive, the FlowID information is sent to the priority encoder.

Dissimilar to the TCAM-based unit, the configuration of entries disables the packet

classification in the Axonerve-based unit. Because, the Axonerve does not support

synchronous read from the entries and writing to the entries. Our Axonerve controller

act as an arbiter between the configuration and the packet classification. When the

control processor attempts to configure an entry in the Axonerve, the packet

classification in the Axonerve-based unit is suspended. The alternative approach is to

store the configuration information if the Axonerve IP is needed for lookup operation.

Since the alternative approach increase the complexity of the controller, the first

approach is implemented for the evaluation purpose.

The Axonerve-based unit stores 1024 entries with the restrictions in field masking. It

supports 2048 types of entries, while the TCAM-based unit supports 4096 types of

matches. Since the open field is always specified for the Axonerve-based unit, the

rule types without destination MAC address cannot be mapped. In order to cover all

rule types, the TCAM-based unit can be used in parallel with the Axonerve-based

unit.

Page | 58

Figure 40: Example scenario for Axonerve-based unit

Figure 40 shows an example scenario for the Axonerve-based unit. The hash results

of 12-tuple forms 83-bit key that is applied to the Axonerve. The matching entry’s

address is used as a pointer to lookup in the rule table. Finally, the specified fields in

the rule table entry is compared against the original field values.

The collisions in the address space of Axonerve key is also possible due to the

nature of hashing. I did the experimental hash collision analysis with the synthetic

rule sets for the Axonerve-based unit. The rules specifying destination MAC address

are mapped to the Axonerve model which has 1024 entries with 83-bit key. The

expected number of collision is 0.01 when configuring 1024 Axonerve entries.

Therefore, the probability of collision is very low due to our hashing functions. Apart

from that, Axonerve entries can collide due to the internal functionality of IP. If the

values assigned to the open field are randomly distributed, the probability of internal

collision is very low according to the specification of the Axonerve IP.

5.5.3 Evaluation Results

As shown in Figure 39, the Axonerve-based unit is integrated with the hash-based

unit and the linear search unit. The evaluation results are obtained for the following

table sizes:

• 8 linear search entries

• 512 hash-based entries

• 1024 Axonerve-based entries

Page | 59

Table 12: Latency, throughput, and power dissipation of FlowCache with Axonerve

Latency (ns) Throughput (Gbps) Power Dissipation (W)

165 12.8 0.48*

The trial version of Axonerve works with our 200 MHz data path clock. Therefore,

clock domain crossing is not required between the data path clock and the Axonerve

clock. Although the TCAM has a single clock cycle latency for search operation, the

Axonerve has 12 clock cycles latency. The Axonerve-based unit with the controller

has 15 clock cycles latency. The other search units align their results according to the

Axonerve-based unit. The latency of FlowCache increase from 145 ns to 165 ns with

Axonerve. Similarly, the power dissipation increases by fifty percent compared to the

FlowCache with TCAM according the implementation results in Vivado 2015.4. The

throughput is 12.8 gigabits per second since the FlowCache with Axonerve is still

able to accept new input in each clock cycle. The comparison between the

FlowCache with TCAM and the FlowCache with Axonerve should be taken with a

grain of salt because the table sizes are different for these options. Table 12 show

the latency, throughout and power dissipation results of FlowCache with Axonerve.

Table 13: Resource utilization of FlowCache with Axonerve

Resource Type Used Available Utilization (%)

LUTs 10810 134600 8.03

Registers 7040 269200 2.63

BRAM tiles 48 365 12.32

Table 13 shows the resource utilization of FlowCache with Axonerve. Target device

is Artix-7 (xca200tfbg676i). These results justify that bigger tables can be easily used

in this size of FPGA. The BRAM usage is doubled compared to the FlowCache with

TCAM since Axonerve stores a whole entry table in BRAMs.

The hash-based unit is scalable with the number of entries, whereas the TCAM-

based unit is limited with timing constraints. This limits the scalability of the

FlowCache. By replacing our TCAM design with the Axonerve IP, the generic

matcher in the FlowCache becomes scalable with number of entries.

* The power dissipation value taken from the power dissipation report of Vivado 2015.4. It should be
taken with a grain of salt because they don’t show realistic power dissipation values.

Page | 60

6. Conclusion and Future Work

OpenFlow requires a packet classification method that can match packets with an

arbitrary number of fields. Traditional packet classification methods don’t provide

required scalability with the number of fields, incremental update and deterministic

search time latency. I propose a hardware accelerated packet classification method

with software switch for OpenFlow 1.0 specification. Decomposition based approach

is combined with a hash table and TCAM for flow caching on FPGA. The rule type-

specialized match circuit (EMH) provides a memory efficient and scalable flow

caching with predefined types, whereas the generic matcher (EMA) supports all the

combinations of fields as a match type. However, EMA does not scale well with the

number of entries and it is limited with TCAM implementation on FPGA. The

FlowCache combines these two methods to cache flow table entries for OpenFlow

packet classification. The goal is to improve the average performance by offloading

the software switch, which is Open vSwitch.

In the beginning of my master thesis, the initial design of EMH is provided by the

company. I analyzed the rule sets that are used in a data center. Based on this

analysis, I have observation that only small number of rule types are used in practice

although there are many potential rule types in theory. By exploiting this observation,

I adapt the hash-based unit in a way that the four most used rule types are mapped

to the hash-based unit. According to the rule set analysis in Section 3.5, 88 percent

of rules in the analyzed network can be mapped to the hash-based unit. However,

the rule dependency problem should be solved if there are overlapping and

prioritized rules in the rest of rules. In order to solve this problem, I designed EMA

that is capable of storing all rule types. The rules that are not supported by EMH are

mapped to EMA. Since the overlapping and more prioritized rules are mappable with

EMA, it increases the mapping power of all design significantly.

According to the resource utilization in Section 3.7.1, EMH can store up to 8K

OpenFlow 1.0 entries in our FPGA. Similarly, EMA can store up to 1K entries in our

FPGA by pipelining and parallel usage of TCAMs. Parallel TCAMs provides better

scalability at the expense of latency. The results of parallel TCAMs should be

registered before combining them to achieve required timing. The estimated values

are calculated based on the BRAM usage of EMH and the memory LUT usage of

EMA. The rule set analysis shows that 88 percent of rules are mappable to EMH. The

ratio of EMH table size to EMA table size can be selected as eight based on the rule

set analysis. As a result of the resource utilization and the rule set analysis, I

propose to store 8K rules in EMH and 1K entries in EMA.

As a future work, the alternative solutions to hash collision problem should be

investigated. One alternative to deterministic hashing is to use open address

mechanism, such as Cuckoo Hashing. Moreover, the generic matcher does not scale

well due to the TCAM implementation on FPGA. Different approaches should be

investigated to replace the current TCAM implementation. The evaluation results of

Axonerve shows that TCAM can be replaced with Axonerve to store a high number of

entries in the generic matcher.

Page | 61

The current implementation of parser is quite rigid. It allows processing on a fixed set

of fields. However, the trend in network processing is flexible and programmable data

planes for SDN switches. In order to support different protocols and match fields,

different configurable parser implementations should be investigated. TCAM can be

used to configure supported protocols and extracted fields in a configurable parser.

Apart from the future work in the hardware accelerator, the further research should

focus on the software part. The idea is to accelerate active flows, flows requiring low

latency and flows with a high data rate. The mapping software should extract the

entries from Open Vswitch and map the desirable flows to the FlowCache. The

current mapping is based on the userspace module of OvS. The next step is to

extract the flow table entries from the kernel module to map the desirable flows.

Page | 62

Acknowledgements

First of all I would like to acknowledge my advisors Christian Liß and Andreas

Oeldemann, who guided me throughout my master thesis. The initial EMH IP was

implemented by Hartmut Müller. Similarly, the mapping software API is written by

Marian Ulbricht and me. I thank Hartmut Müller and Marian Ulbricht for their

contribution. Moreover, I thank Andreas Foglar, Charles Bry, and Umar Farooq Zia

for their helpful comments.

The Axonerve IP core is a third-party IP which is provided by Nagase. I integrated the

IP to our system and evaluate the performance. I thank Nagase for providing the

Axonerve IP core.

Page | 63

References
[1] McKeown, Nick, et al. "OpenFlow: enabling innovation in campus networks." ACM SIGCOMM

Computer Communication Review 38.2 (2008): 69-74.

[2] Specification, OpenFlow Switch. "Version 1.0. 0 (Wire Protocol 0x01)." Open Networking

Foundation (2009).

[3] Gupta, Pankaj, and Nick McKeown. "Packet classification on multiple fields." ACM SIGCOMM

Computer Communication Review29.4 (1999): 147-160.

[4] “OpenFlow Reference Linux Software – Soft Switch,” http://www.openflow.org/wp/tag/soft-switch

[accessed 22.Sep.2017]

[5] Pfaff, Ben, et al. "The Design and Implementation of Open vSwitch." NSDI. 2015.

[6] Naous, Jad, et al. "Implementing an OpenFlow switch on the NetFPGA platform." Proceedings of

the 4th ACM/IEEE Symposium on Architectures for Networking and Communications Systems. ACM,

2008.

[7] Antichi, Gianni, et al. "Design and development of an openflow compliant smart gigabit

switch." Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE. IEEE, 2011.

[8] Yabe, Tatsuya. "OpenFlow implementation on NetFPGA-10G Design Document."

[9] Specification, OpenFlow Switch. "Oct. 14, 2013, version 1.4. 0 (Wire Protocol 0x05)." The Open

Networking Foundation.

[10] Giladi, Ran. Network processors: architecture, programming, and implementation. Morgan

Kaufmann, 2008.

[11] Gupta, Pankaj, Steven Lin, and Nick McKeown. "Routing lookups in hardware at memory access

speeds." INFOCOM'98. Seventeenth Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings. IEEE. Vol. 3. IEEE, 1998.

[12] Devroye, Luc, and Pat Morin. "Cuckoo hashing: further analysis." Information Processing

Letters 86.4 (2003): 215-219.

[13] Morrison, Donald R. "PATRICIA—practical algorithm to retrieve information coded in

alphanumeric." Journal of the ACM (JACM)15.4 (1968): 514-534.

[14] Gupta, Pankaj, and Nick McKeown. "Packet classification on multiple fields." ACM SIGCOMM

Computer Communication Review29.4 (1999): 147-160.

[15] Baboescu, Florin, and George Varghese. "Scalable packet classification." IEEE/ACM transactions

on networking 13.1 (2005): 2-14.

[16] Sun, Hai, et al. "OpenFlow accelerator: a decomposition-based hashing approach for flow

processing." Computer Communication and Networks (ICCCN), 2015 24th International Conference

on. IEEE, 2015.

[17] Gupta, Pankaj, and Nick McKeown. "Packet classification using hierarchical intelligent

cuttings." Hot Interconnects VII. Vol. 40. 1999.

[18] Jiang, Weirong, and Viktor K. Prasanna. "Sequence-preserving parallel IP lookup using multiple

SRAM-based pipelines." Journal of Parallel and Distributed Computing 69.9 (2009): 778-789.

[19] Lakshminarayanan, Karthik, Anand Rangarajan, and Srinivasan Venkatachary. "Algorithms for

advanced packet classification with ternary CAMs." ACM SIGCOMM Computer Communication

Review. Vol. 35. No. 4. ACM, 2005.

[20] Tanyingyong, Voravit, Markus Hidell, and Peter Sjödin. "Using hardware classification to improve

pc-based openflow switching." High Performance Switching and Routing (HPSR), 2011 IEEE 12th

International Conference on. IEEE, 2011.

Page | 64

[21] Dong, Qunfeng, et al. "Wire speed packet classification without tcams: a few more registers (and

a bit of logic) are enough." ACM SIGMETRICS Performance Evaluation Review. Vol. 35. No. 1. ACM,

2007.

[22] Katta, Naga, et al. "Infinite cacheflow in software-defined networks." Proceedings of the third

workshop on Hot topics in software defined networking. ACM, 2014.

[23] Baboescu, Florin, Sumeet Singh, and George Varghese. "Packet classification for core routers: Is

there an alternative to CAMs?." INFOCOM 2003. Twenty-Second Annual Joint Conference of the

IEEE Computer and Communications. IEEE Societies. Vol. 1. IEEE, 2003.

[24] Axonerve. Axonerve Low Latency Matching Engine Synthesizable IP Core.

http://www.axonerve.com/ [accessed 22.Sep.2017]

[25] htps://www.xilinx.com/support/documentaton/applicaton_notes/xapp1151_Param_CAM.pdf

[accessed 22.Sep.2017]

[26] Chapman, Ken. "Saving Costs with the SRL16E." Xilinx techXclusive(2000).

[27] Taylor, David E., and Jonathan S. Turner. "Classbench: A packet classification

benchmark." IEEE/ACM Transactions on Networking (TON) 15.3 (2007): 499-511.

[28] Ganegedara, Thilan, Weirong Jiang, and Viktor Prasanna. "Frug: A benchmark for packet

forwarding in future networks." Performance Computing and Communications Conference (IPCCC),

2010 IEEE 29th International. IEEE, 2010.

[29] Matoušek, Jiří, et al. "ClassBench-ng: Recasting ClassBench After a Decade of Network

Evolution." Proceedings of the Symposium on Architectures for Networking and Communications

Systems. IEEE Press, 2017.

[30] https://en.wikipedia.org/wiki/Birthday_problem [accessed 22.Sep.2017]

[31] Liß, Christian, et al. "Architecture of a synchronized low-latency network node targeted to

research and education." High Performance Switching and Routing (HPSR), 2017 IEEE 18th

International Conference on. IEEE, 2017.

[32] http://openvswitch.org/ [accessed 22.Sep.2017]

[33] Pfaff, Ben, and Bruce Davie. "The open vSwitch database management protocol." (2013).

[34] Shahbaz, Muhammad, et al. "Pisces: A programmable, protocol-independent software

switch." Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference. ACM, 2016.

[35] Katta, Naga, et al. "Infinite cacheflow in software-defined networks." Proceedings of the third

workshop on Hot topics in software defined networking. ACM, 2014.

[36] http://ostinato.org/ [accessed 22.Sep.2017]

[37] https://www.wireshark.org/ [accessed 22.Sep.2017]

[38] Rotsos, Charalampos, et al. "OFLOPS: An Open Framework for OpenFlow Switch

Evaluation." PAM. Vol. 7192. 2012.

[39] Rotsos, Charalampos, et al. "OFLOPS-Turbo: Testing the next-generation OpenFlow

switch." Communications (ICC), 2015 IEEE International Conference on. IEEE, 2015.

[40] Singh, Sumeet, et al. "Packet classification using multidimensional cutting." Proceedings of the

2003 conference on Applications, technologies, architectures, and protocols for computer

communications. ACM, 2003.

[41] Weerasinghe, J., Abel, F., Hagleitner, C., & Herkersdorf, A. (2015, August). Enabling fpgas in

hyperscale data centers. In Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on

Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and

Communications and Its Associated Workshops (UIC-ATC-ScalCom), 2015 IEEE 12th Intl Conf

on (pp. 1078-1086). IEEE.

http://www.axonerve.com/

https://en.wikipedia.org/wiki/Birthday_problem

http://openvswitch.org/

http://ostinato.org/

https://www.wireshark.org/

Page | 65

Appendix A: Search Units Implementation Details

Figure 41: Hash-based unit implementation details

As shown in Figure 41, there are four different hash results for each type in the hash-

based unit. The hash-based controller has access to the hash table and the field

table. Based on the matching entry in the field table, FlowID is given as output.

Figure 42: Linear search unit implementation details

Page | 66

As shown in Figure 42, the linear based unit is simplified version of the hash-based

unit without hash generation.

Figure 43: TCAM-based unit implementation details

Figure 43 shows the TCAM-based unit implementation. Unlike the hash generation in

the hash-based unit, the hash generation perform hashing on each field separately

and the concatenated result is passed to the controller. The hash table is replaced by

the TCAM module that manages clock domain crossings.

Page | 67

Appendix B: Rule Structure of FlowCache

Table 14 shows the EMH rule structure. The rules are stored in the fields table and

configured by the control processor. A field table entry has a match field, FlowID,

priority field, type ID field and valid bit.

Table 14: EMH rule structure

287 … 32 31....16 15....8 7....6 5...1 0

Fields used for
comparison:

Depends on
TYPE_ID.

FlowID

This value will
be used as
Flow ID

Priority

Defines the
priority of this
rule. (If there
are more
matching
rules).

Not used TYPE_ID

Defines the
type of this
rule. (Binary
encoded)
0001=>Type1
0010=>Type2
0100=>Type3
1000=>Type4

VALID_BIT

0: do not use
this rule

1: this rule is
valid

Table 15 shows the EMA rule structure. Type ID field is 12-bit number where each bit

corresponds a header field. If the bit is set to ‘1’, the corresponding field is compared

against the original field by this rule. Otherwise, the field is ignored by the rule.

Table 15: EMA rule structure

287 … 46 45....30 29....22 21....10 9...1 0

Fields used for
comparison:

Depends on
TYPE_ID.

FlowID

This value will
be used as
Flow ID

Priority

Defines the
priority of this
rule. (If there
are more
matching
rules).

TYPE_ID

Defines the
type of this
rule.

Reserved

It will be used
for IPv6
support

VALID_BIT

0: do not use
this rule

1: this rule is
valid

		List of Figures

		List of Tables

		List of Abbreviations

		1. Introduction

		2. Background

		2.1 Problem Statement

		2.2. Traditional Packet Classification

		2.2.1 Linear Search Schemes

		2.2.2 Table Schemes

		2.2.3 Hash-based Schemes

		2.2.4 Trie Schemes

		2.2.5 CAM Schemes

		2.3 OpenFlow Packet Classification

		2.3.1 Decision-tree Schemes

		2.3.2 Decomposition-based Schemes

		2.4 Flow Caching

		2.5 TrustNode

		3. FlowCache

		3.1 Objectives

		3.2 Overview

		3.3 Search Units

		3.3.1 Hash-Based

		3.3.2 Linear Search

		3.3.3 TCAM-based

		3.4 TCAM Implementation

		3.5 Rule Set Analysis

		3.6 Hash Collision Analysis

		3.6.1 Analytical Analysis

		3.6.2 Experimental Analysis

		3.7 Evaluation

		3.7.1 FlowCache Results

		3.7.2 Search Units Results

		4. TrustNode as OpenFlow Switch

		4.1. Architecture

		4.2. Software

		4.2.1. Open vSwitch

		4.2.2 Mapping Software

		4.3 Hardware

		4.4 Test Setup

		5. FlowCache with Axonerve

		5.5.1 Axonerve Introduction

		5.5.2 Axonerve Integration to FlowCache

		5.5.3 Evaluation Results

		6. Conclusion and Future Work

		Acknowledgements

		References

		Appendix A: Search Units Implementation Details

		Appendix B: Rule Structure of FlowCache

https://www.tug.org/begin.html
https://innoroute.com/wp-content/uploads/2017/06/HPSR17-TN.pdf

