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Abstract 


 


Multi-field packet classification has evolved from fixed 5-tuple matching to flexible 


matching with arbitrary combinations of several packet headers. For example, 


OpenFlow 1.0 requires classifying each packet using up to 12-tuple packet header 


fields. Conventional packet classification methods are insufficient in addressing the 


challenge of increasing the number of fields. Decision-tree based packet 


classification algorithms do not scale well to the number fields for OpenFlow. 


Decomposition algorithms failed to provide incremental update and deterministic 


latency. 


To catch up the trend for OpenFlow switches, I propose hybrid flow caching 


approaches on FPGAs, named FlowCache. The approaches use exact matching 


methods with field masking. The hybrid concept combines a highly optimized rule 


type-specialized matching circuit with a generic matching circuit that supports 


arbitrary combinations of fields. FlowCache allows incremental update and has 


deterministic latency. The purpose is to accelerate active, high priority and elephant 


flows on the FPGA and to process all remaining flows on the processor. Therefore, it 


is designed to improve average performance, not worst-case performance.  


The implemented FlowCache is optimized based on the analysis for a data center. 88 


percent of rules in the analyzed rule set belong to only four rule types. By exploiting 


this observation, the rule type-specialized matcher stores the four most common rule 


types in a memory efficient way and the rest of rule types are stored in the generic 


matcher in a much less efficient way. According to the resource utilization of 


FlowCache, it is possible to easily store up to 8K entries in the rule type-specialized 


matcher and 1K entries in the generic matcher by using the resources of our target 


FPGA. 
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1. Introduction 
 


Packet classification is an important function for different applications in switches, 


routers and firewalls. Such applications categorize packets according to given rule 


sets into flows. The definitions for packet classification are the followings: 


• A flow is a stream of relevant packets that share the same characteristics. 


• A rule contains multiple field values that specify an exact packet header or a 


portion of packet header. For example, a rule specifies first 8 bits of IP source 


address, whereas destination MAC address is specified by 48 bits.  


•  A rule set consist of rules and defines how to classify packets based on their 


header fields.  


 


 


Figure 1: Block diagram of packet classification and processing 


 


Packet classification methods search a rule set which binds a packet to a flow by 


assigning a flow identifier, FlowID. If there are multiple matches in a rule set, the 


most prioritized one is assigned as FlowID. FlowID determines the action applied to 


the packet. As shown in Figure 1, the packets with same FlowID form a flow and the 


action unit takes actions based on their FlowID. The main role of action unit is to 


modify packet header fields and to forward it from one port to another.  


Although it has been studied well, traditional packet classification methods do not 


meet the requirements of new applications. New network functionalities, such as 


firewall processing, QoS differentiation, virtual private networks, require multi-field 


packet classification. For example, current data center network required fine-grained 


flow control to route traffic efficiently. Since traditional methods consider only the 
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fixed 5-tuple fields, they don’t support fine-grained rule specification for multi-field 


packet classification.   


Software-Defined Networking (SDN) has been proposed as a leading architecture to 


facilitate the innovation of computer networks [1]. The data plane, which forwards 


packets, and the control plane, which implements the protocols to manage the data 


plane are separated from each other. In other words, SDN provides an abstraction 


between the control plane and the data plane in a network. It also provides an open 


software platform to run experiments and develop new protocols. OpenFlow [1] is a 


protocol which enables the communication between SDN switch and SDN controller. 


OpenFlow 1.0 [2] employ complex rule specifications including 12 header fields. 


OpenFlow technologies centralize the complexity to the OpenFlow controller. The 


controller configures the flow tables in the OpenFlow switch by OpenFlow protocol.  


Classifications systems based on processor have been experiencing large attention 


in recent years, mainly due to their flexibility. For example, the OpenFlow community 


provides an open-source software package for Linux that implements a software 


OpenFlow switch as a reference implementation [4]. Similarly, Open vSwitch [5] also 


supports OpenFlow protocols. On the other hand, they cannot meet line-speed 


requirements for high-speed networking applications since their throughput is limited 


with the processor. FPGAs offer an opportunity to meet line speed requirements. In 


contrast to ASICs, FPGAs can be reconfigured many times with different matching 


circuits. Since OpenFlow standards change over time, the ability to reconfigure 


FPGAs enables us to change the design. OpenFlow switches [6,7] have been 


developed on the NetFPGA platforms [8]. FPGAs are making their way into data 


centers are used to offload and accelerate specific services [41]. 


In this thesis, I propose a hybrid FPGA-based classification engine, named 


FlowCache, which combines exact match of hard-coded types and exact matching of 


arbitrary types. It uses 3 different search methods, which are hash table, linear 


search and TCAM-based. This architecture exploits the observation that most of the 


rules belongs to certain rule types. Since the FlowCache supports field masking, it is 


OpenFlow friendly.  


The initial design of hash-based unit is provided as an existing IP in the beginning of 


the thesis. I adapt it for OpenFlow packet classification by mapping the four most 


used types to it. Moreover, I design the TCAM-based unit that is capable of storing all 


rule types. Overlapping and more prioritized rules become mappable with the TCAM-


based unit, thus it improves the mapping power of all design significantly. Besides 


storing OpenFlow rules in the TCAM-based unit, it can be also used as a collision 


table of the hash based unit. Similar to the wildcard unit in the NetFPGA design [6], 


another usage of the TCAM-based unit is to forward flows between a virtual port and 


a physical port.   


A small number of flows carry the majority of Internet traffic. These flows called as 


elephant flows in computer networking. Our goal is to improve average performance 


of packet classification by storing active and elephant flows in FPGA, whereas big 


flow tables are stored in processor. The FlowCache has a deterministic latency with 


pipelined design. Moreover, it allows incremental update. Thus, the entries in the 


FlowCache can be updated without reconstructing the data structure.  
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Depending on the type of network application, the traffic and corresponding rule sets 


should be considered when choosing the optimal data structure and algorithms. For 


example, the network equipment in data center need fine-grained flow control over 


thousands of physical and virtual machines, whereas the backbone router needs an 


optimized packet classification method for IP routing. Therefore, I made rule set 


analysis to understand the characteristics of rules and our data structures are 


optimized based on this rule set analysis.   


The remainder of this thesis is organized as follows: Section 2 provides required 


background for this work. In Section 3, I explain the proposed packet classification 


system with the evaluation and the analysis results. Section 4 explains how the target 


platform is used as an OpenFlow switch. Section 5 provides the results of FlowCache 


integrated with a third-party IP, named Axonerve. Finally, this thesis is concluded by 


Section 6. 
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2. Background  
 


This section states the problem we intend to solve and summarize exiting packet 


classification methods. Then, the related work about flow caching is presented. At 


last, our target platform is introduced. 


2.1 Problem Statement 
 


Incoming packet headers are mapped to the matching rule with the highest priority in 


a defined rule set. After the packet classification is done, the packet is processed 


according to the corresponding action of the matching rule. For example, the action 


can be drooping the packet or forwarding the packet to a port. More formally, packet 


classification is defined as follows: 


• A packet header 𝐻 consist of 𝑑 relevant fields ℎ𝑗, i.e., 𝐻 = (ℎ1, … , ℎ𝑑) . 


• Each field ℎ𝑖 is an element of 𝐷𝑖 that represent all possible values for ℎ𝑖, e.g., 


[0, 216 − 1] for L4 source port. 


•  𝑈 represents the cross product for all header combinations 𝐷1𝑥 … 𝑥𝐷𝑑. 


• A rule set 𝑅 consists of 𝑁 prioritized rules  𝑅1, … , 𝑅𝑁. Without loss of generality, 


I assume that rule 𝑅𝑎 is more prioritized than rule 𝑅𝑏 if 𝑎 < 𝑏. 


• Each rule 𝑅𝑖 is a function 𝑅𝑖: 𝑈 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} that consist of 𝐶1, … , 𝐶𝑑, where  


𝐶𝑗:  𝐷𝑗  → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}  is a function that checks the match criterion on the 


corresponding packet header fields.  


•  Rule 𝑅𝑖 matches a packet header 𝐻 if all header checks are true, i.e., 𝑅𝑖 (𝐻) =


 𝐶1
𝑖 (ℎ1) ∧ … ∧  𝐶𝑑


𝑖  (ℎ𝑑) . 


• Finally, the rule set 𝑅 is a function  𝑅: 𝑈 → {1, … , 𝑁} ∪ {𝕆} that returns the index 


of matching rule or non-match symbol. 


2.2. Traditional Packet Classification  
 


In traditional 5-tuple packet classification, packets are classified based on the 5 fields 


in the packet header, which are IP source/destination addresses, L4 


source/destination ports, and IP protocol. There are different types of matching 


criteria for fields: prefix match for IP source/destination addresses, range match for 


L4 source/destination ports and exact match for IP protocol.  


Numerous methods for traditional packet classification have been proposed to find 


the optimal solution. To evaluate the methods, three main metrics are used: time 


complexity, memory efficiency and scalability. Time complexity gives information 


about how much time is needed to perform search or update operation. Memory 


efficiency is the ratio between the required memory to maintain the data structure and 


the data itself. In general, there is a tradeoff between time complexity and memory 


efficiency. Scalability refers to the ability to increase the number of entries in the data 


structure. 
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Traditional packet classification methods can generally be categorized into five major 


schemes [10]: linear search schemes, table schemes, hash-based schemes, trie 


schemes and CAM schemes. These schemes are discussed below. 


2.2.1 Linear Search Schemes 
 


Elements are ordered linearly with pointers to their next elements as a linked list. In 


the worst-case time complexity for lookup is 𝑂(𝑛), where 𝑛 is the number of entries. It 


is extremely inefficient for a high number of entries. However, if the number of entries 


is low, it might be a good choice. In the FlowCache, this method is used as a collision 


table of the hash-based unit.   


2.2.2 Table Schemes 
 


Direct addressable tables are arrays of elements addressed by their keys. Although 


the time complexity is 𝑂(1), it requires a table entry for all potential key range. Due to 


their memory requirement, it is not reasonable to use it for large key range.  DIR 24-


8-Basic scheme [11] is the optimized version of direct addressable table for IPv4 


routing. This technique reduces the memory requirement significantly by exploiting 


the observation that most of IP packets are specified by prefixes shorter than 25-bit.     


2.2.3 Hash-based Schemes 
 


The idea of hash table is to create a direct addressable table in which there is almost 


one to one mapping between keys and addresses of elements. Hashing function 


makes the transformation from packet headers to compressed keys.  


In the FlowCache, we used XOR operations as a hashing function. Since one to one 


relation between the keys and addresses is impossible to achieve, hash collisions are 


inevitable. Hash collisions during lookup are detected by comparing matching entry’s 


fields against packet header fields so that the classification result is verified. If the 


comparison result is negative, the hash based unit does not assign any FlowID. 


When configuring the entries of hash table, there might be colliding entries. The 


colliding entries are stored in a collision table in our architecture. Similarly, Cuckoo 


Hashing [12] can be used to reduce the probability of hash collisions. Basically, there 


are multiple hashing functions to create multiple addresses for each incoming packet. 


In this way, most of the hash collisions can be resolved.     


Hash-based schemes are very efficient for high range keys in terms of memory 


requirements. The table entries are highly utilized, so they provide high memory 


efficiency. Since their architecture is suitable for pipelined designs, they are widely 


used in hardware packet classification engines. On the other hand, they don’t support 


prefix matches, range matches as well as field masking.   


2.2.4 Trie Schemes 
 


Trie (prefix tree) is an ordered tree that used to represent strings, where tree’s edges 


are labeled by the characters of strings and the strings are represented by the leaf 
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nodes. In the context of packet classification, the addresses are considered as 


strings and spelled out character by character. Tries are widely used for longest 


prefix match (LPM) of IP source/destination addresses.  


PATRICIA Trie [13] is a binary compact trie where any node that has only one child is 


merged with its child. In contrast to other tries, it does not store keys in its nodes. The 


nodes maintain the number of bits that should be skipped over in order to make the 


next decision. The average lookup time complexity is 𝑂(log (𝑚)), 𝑚 is the key length. 


However, the worst-case lookup time complexity is 𝑂(𝑚). Since they don’t provide 


deterministic latency, it is difficult to use them in a pipelined hardware design.    


2.2.5 CAM Schemes 
 


Content addressable memory (CAM) is a special memory type that enables 


searching in a single clock cycle. It simultaneously compares a key against all entries 


in the CAM and returns the address of the matched entry. Binary CAM (BCAM) 


stores and compares only bits, which are “0” and “1”. Whereas, Ternary CAM 


(TCAM) supports an additional don’t care bit. This feature enables TCAM to lookup 


with masking information.  


TCAM-based schemes are widely used in network processing due to their ability to 


process packets at high speed. On the other hand, TCAMs need large silicon area 


and have high power consumption. Moreover, they do not provide the flexibility to 


match arbitrary number of packet headers. 


2.3 OpenFlow Packet Classification 
 


OpenFlow packet classification aims to match a greater number of header fields then 


traditional packet classification does. Recently proposed OpenFlow 1.4 specification 


[9] requires classifying each packet up to 42 header fields. Besides the traditional 


layer-3 and layer-4 packet header fields, more header fields are defined to support 


complex protocols. In the future, these complex protocols are expected to be widely 


used in high-speed networking applications. 


OpenFlow switch contains a flow table which is configured by the controller to classify 


packets. The flow table consist of several entries. Each entry has its own priority field. 


If the packet headers match multiple entries, the one with higher priority determines 


FlowID. OpenFlow 1.0 employ complex rule specifications including 12 header fields. 


For OpenFlow 1.0, a flow entry composed of match field, counters and an associated 


action. There are no sequential look tables in this version of OpenFlow. As shown in 


Table 1, the 10 fields are defined as exact matches. IP source and destination 


address are defined as prefix matches.  


Each flow table entry has its own counters to record the conditions of entry. In other 


words, the counters are used to collect statistics about flows so that the controller can 


make decisions based on the statistics. After a matching entry is found, the 


associated counters will be updated and the associated action will be taken. 
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Table 1: Match fields of OpenFlow 1.0 


Header Field Number of bits Match Criterion 


Ingress Port Variable Exact 


Source MAC address 48 Exact 


Destination MAC address 48 Exact 


Ethernet type 16 Exact 


VLAN ID 12 Exact 


VLAN priority 3 Exact 


IP source address 32 Prefix 


IP destination address 32 Prefix 


IP protocol 8 Exact 


IP type of service 6 Exact 


L4 source port 16 Exact 


L4 destination port 16 Exact 


 


OpenFlow uses the concept of flows to identify network traffic based on predefined 


rules that can be dynamically programmed by the OpenFlow controller. Therefore, 


the OpenFlow switch should allow incremental update to meet the requirement. 


Some of existing packet classification algorithms does not allow incremental update. 


For example, RFC [3] constructs a data structure from given rules and it is not 


possible to update entries without reconstructing the data structure. 


 


Table 2: Example OpenFlow table 


Rule# 
Ing 
Port 


Src 
MAC 


Dst 
MAC 


Ether 
Type 


Vlan 
ID 


Vlan 
Prio 


Src 
IP 


Dst 
IP 


IP 
Prot 


Ip 
TOS 


Src 
Port 


Dst 
Port 


Rule1 1 00:03:FF * 0x8100 15 * 1101 000* TCP 5 5 68 


Rule2 * 07:06:33 * 0x8000 * 3 * * UDP * 10 * 


Rule3 2 * * * * * * 110* * * * * 


Rule4 2 * * * * * * 10** * * * * 


Rule5 5 17:66:A4 0A:99:B3 0x8000 6 1 111* 000* TCP 3 22 1080 


 


Table 2 shows a simplified example of OpenFlow rule table, where Src/Dst MAC are 


24 bits, Src/Dst IP are 4 bits. Unlike traditional packet classification, the rules can be 


categorized into 2 groups, simple rules and complex rules. A simple rule is defined as 


the rule of which are all the fields are specified. “Rule5” is an example for a simple 


rule. A complex rule is defined as the rule of which some fields are masked. “Rule1” 


is an example of complex rule. As a result, each field might be either specified or 


masked in OpenFlow packet classification, whereas match fields are fixed in 


traditional packet classification.  


 


Table 3: Example Packets 


Packet# 
Ing 
Port 


Src 
MAC 


Dst 
MAC 


Ether 
Type 


Vlan 
ID 


Vlan 
Prio 


Src 
IP 


Dst 
IP 


IP 
Prot 


Ip 
TOS 


Src 
Port 


Dst 
Port 


Packet1 2 00:02:A0 00:32:04 0x8100 7 2 1000 1101 TCP 4 5 68 


Packet2 5 17:66:A4 0A:99:B3 0x8000 6 1 1111 0000 TCP 3 22 1080 
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Table 3 shows the header fields of example packets. “Packet1” matches “Rule3”. 


Similarly, “Packet2” matches “Rule5”. There is also priority field for each rule, which 


in not shown in Table 3. In case of multiple matches, the one with the higher priority 


determines FlowID. 


OpenFlow packet classification methods can be considered as improved version of 


traditional packet classification methods in terms of their scalability with the number 


of fields. Most of OpenFlow packet classification algorithms fall into decision-tree and 


decomposition-based schemes. The remaining of this section gives the overview of 


these schemes. 


2.3.1 Decision-tree Schemes 
 


Decision-tree schemes constructs a decision tree from the rule set and incoming 


packet headers are traversed to find the matching rule. In other words, they take the 


geometric view of the packet classification problem. Each rule defines a hypercube in 


a multidimensional space and each packet represent a point in this multidimensional 


space. Decision-tree schemes performs some heuristic methods to cut the space into 


smaller subspaces. In each cutting, you end up with fewer potential rules. Finally, 


linear search is performed to find the best matching rule.  


 


 


Figure 2: Geometric representation of HiCuts and HyperCuts with 4 rules [40] 


 


There are some variations of decision-tree schemes based on the method of cutting 


the space. HiCuts [17] cuts the space evenly each time by using a single dimension. 


HyperCuts [18] allows multiple dimensions to be cut simultaneously to reduce the 


length of the tree. Figure 2 shows a simple example of HiCuts (on left) and 


HyperCuts (on right) with four rules in two-dimensional space. Both methods suffer 


from memory overhead due to rule duplication. HyperSplit [19] solves the rule 


duplication problem by using non-equal sized cuts. In general, they are difficult to 


implement in hardware since determinism is hard to achieve with these schemes. 


Moreover, they are not scalable with the number of fields. The depth of tree 


increases with the number of fields. Therefore, it is difficult to implement them in a 


pipelined design for a high number of fields. 
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2.3.2 Decomposition-based Schemes 
 


Decomposition-based schemes search each packet header fields independently and 


the results are combined at the end to find final classification result. In this scheme, 


the search process can be parallelized. By implementing a decomposition based 


approach on FPGA, the abundant parallelism on FPGA can be exploited.  


RFC [14] and ABV [15] provide good performance at the expense of high memory 


consumption. The aggregation of intermediate results leads to large memory 


overhead. They are also incapable of updating the entries without reconstructing their 


data structures. In general decomposition-based schemes provide good throughput 


and scalability.  


Sun et al. [16] provide a good solution for OpenFlow packet classification. Dissimilar 


to other decomposition-based schemes, this scheme allows incremental update and 


scales well to number of fields. They introduce extra data structures to remove the 


rules. In this way, the entries are updated without reconstructing the data structure. 


Although they claim that any match type is supported, wildcard and range matches 


are converted to prefix and exact matches. Thus, the memory consumption increases 


significantly for prefix and range matches.  


2.4 Flow Caching 
 


A cache is a fast storage for commonly referenced data. If data request contains 


sufficient locality, the average performance can be improved. The time to access the 


cache is significantly lower than the time to access main storage. By using the same 


concept, the average performance for packet classification can be significantly 


improved. Certain flows can be accelerated in hardware, the rest of flows are 


processed in software. This type of switches can be categorized as software switches 


with hardware classification. 


The Intel 82599 Gigabit Ethernet controller [20] is used to accelerate OpenFlow 


packet classification. Certain types of flow table entries are stored in on-board 


classification hardware on NIC. The fast path gives 40 percent higher throughput 


compared to the regular software based OpenFlow switching [20]. Dong et al [21] 


also propose a solution based on rule caching for traditional packet classification. 


However, their classification logic is not scalable with number of fields, so it cannot 


be used for OpenFlow. Katta et al. [22] use TCAM to cache the rules of active flows. 


This scheme is limited with an external TCAM. TCAMs are 400X more expensive and 


consume 100X more power Mbit than the RAM-based storage [22].  


Naous et al. [6] implement OpenFlow switch on the NetFPGA-1G platform. A packet 


is parsed and then relevant fields are concatenated. The exact match lookup module 


uses hashing functions to find the matching rule. In parallel with the exact lookup, the 


wildcard lookup module performs the lookup in on-chip TCAM for wildcard rules.  It 


can store up to 64K exact match rules and up to 32 wildcard rules. The exact match 


rules are stored in an external SRAM. Although the on-chip TCAM can store 32 


wildcard entries, they are only used for forwarding between physical and virtual ports. 


Yabe [7] improved Naous et al.’s design by implementing it on the NetFPGA-10G 
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board. Both designs use exact matching without field masking. Although OpenFlow 


defines the rules in a fine-grained manner with masking fields, they store flows in a 


coarse-grained manner without masking fields. Therefore, the efficiency of these 


designs largely depends on the traffic pattern. 


Our proposed flow caching method provide exact matching with field masking. In this 


way, our FlowCache is OpenFlow friendly. Since we store only relevant fields of a 


matching rule, it is more memory efficient than the NetFPGA design. Similarly, the 


average cache hit rate is higher than the NetFPGA design. Because, the extra fields 


stored in the NetFPGA design cause cache misses although corresponding rule is 


stored in the FlowCache. Moreover, Open vSwitch [5] also cache certain flows in 


kernel by using exact match with field masking. Thus, it is possible to map the entries 


from the kernel module of OvS to the FlowCache without further processing.  


 


(a) Example Flow Table in SW 


 


(b) First Access to Flow Cache 


 


(c) Second Access to Flow Cache without Field Masking 


 


(d) Second Access to Flow Cache with Field Masking 


 


Figure 3: Example scenario for flow caching 


 


Figure 3 shows an example scenario that explains the difference between exact 


match with field masking and without field masking. Packet 1 in Figure 3(b) does not 


hit any entry in the FlowCache and matches a flow table entry in software. After the 


first access, the corresponding entry is stored in the FlowCache. The FlowCache 


without field masking stores all header fields of first packet, whereas the FlowCache 


with field masking stores only relevant fields, which are ingress port and IP 


destination address. Packet 2 in Figure 3(c) does not match any entry in the 


FlowCache without field masking, although it corresponds to the same rule with 


Packet 1. Packet 2 in Figure 3(d) match an entry in the FlowCache with field 


masking. The FlowCache with field masking covers many practical scenarios in an 


efficient way.   
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2.5 TrustNode 
 


Our platform is a TrustNode board, which is a network device targeted to research 


and education that provides a very low latency. Figure 4 shows the main components 


of TrustNode. The TrustNode FPGA is a Xilinx Artix-200T FPGA, which provides us 


enough resources for SDN offloading on FPGA. The FPGA is connected to 12 


Ethernet PHYs that support 10/100/1000 Mbps connection. The TrustNode board 


also contains a standard Intel x86-64 sub-board as the control processor. The FPGA 


and the control processor are connected via a quad-line PCIe Gen. 2.1 interconnect.  


 


 


Figure 4: Main components of TrustNode [31] 
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3. FlowCache 


3.1 Objectives 
 


The target for the FlowCache implementation is to have a low-latency protocol parser 


and an exact-match forwarding table to enable Software-Defined Networking. More 


specifically, the matching circuits should be optimized for OpenFlow 1.0 specification.  


Multidimensional search makes the design complex and hard to implement on FPGA. 


We have the following requirements for the FlowCache: 


• The design should have low and deterministic pipeline latency. The long 


latency violates the idea of hardware acceleration.  


• Clear discrimination between flows is also an important optimization factor. If 


there are multiple matches with the same priority, the classification should be 


done in the processor, where the big flow tables are stored. The FlowCache 


should not take any wrong action on incoming packets.  


• The design should support line speed requirements so that we can handle the 


traffic without losing the packets. The worst-case scenario should be taken 


into account for the throughput.  


• High memory utilization is also desired because the memory resources 


(BRAM, distRAM) are limited on FPGA. 


• Since OpenFlow provides a granular traffic control access to the OpenFlow 


controllers, the efficient flow caching implementation should support fine-


grained rule declaration. In other words, flow caching with field masking is 


important to cover many practical scenarios in an efficient way. 


• The design should be pipelined to achieve high throughput. The pipelined 


design enables the FlowCache to accept new input for each clock cycle.  


• The design should allow incremental update and scale well with the number of 


entries.  


The idea is that most of the packets are forwarded by FPGA without passing the 


control processor. Therefore, the FlowCache can be considered as a hardware 


accelerator for packet classification. If there is no match for a packet in the FPGA, it 


is passed through the processor by default. The processor picks out the ones which 


require short latency or have high data rate and map them to the FlowCache in the 


FPGA. Long-lived flows are also called as elephant flows in the literature. For 


example, several flows are involved to setup VoIP connections. These control flows 


are forwarded by the control processor. The final media stream is long-lived and has 


high-volume packets. Therefore, it is accelerated by the FlowCache with real time 


priority. By accelerating active and elephant flows, the most of traffic is forwarded by 


the FPGA without using the control processor.  


3.2 Overview 
 


The implemented FlowCache has the following functionality: 
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• In the TrustNode data path, incoming packets are segmented with Network on 


Chip (NoC) header information. The first segment of received packets, which 


contains first 64 Bytes of a packet, are parsed in the FlowCache. Known 


protocols are organized in a tree structure. Important protocol fields are 


extracted from the root to the leaves. Unknown protocols are signaled, so a 


marking for further processing in the control processor is possible. Special 


protocol field values or special combinations thereof are signaled as well to 


mark the respective packet for further processing in the control processor. For 


example, ARP and ICMPv6 packets are forwarded to the control processor.  


• As soon as parsing is finished, the relevant packet header information is 


forwarded to the search units, which are hash-based, linear search and TCAM-


based. 


• In the hash-based unit, all required fields are concatenated. Then a hashing 


function is performed and this result is used as index in a hash table. The hash 


table entries store pointers to rule table entries. The rule table entries are 


checked against the original field values for verification of match process.  


•  In the linear search unit, linear table entries are checked against the original 


field values in a sequential manner. 


• In the TCAM-based unit, we perform individual hashing on each field and then 


the hash results are concatenated. The concatenated result is applied to TCAM 


as a key. Each TCAM entry is coupled with a rule table entry. In case of a 


match in TCAM, the original field values are checked against the matched rule 


table entry to detect collision due to hashing.   


• In case of multiple matches from search units, a priority encoder selects the 


most prioritized one.  


 


 


Figure 5: FlowCache general element structure [31] 
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Figure 5 shows the FlowCache general element structure. It is a cut-through design 


optimized for low-latency, low-jitter and full line-speed processing. It has a delay 


pipeline that provides constant amount of time for finite state machines. When the 


lookup operation is finished in the FSMs, the FlowID information is inserted to the 


delayed packet. It has two types of memories. The internal memories are used for 


internal state changes of the FSMs. The shared memories are configured by the 


control processor via a memory-mapped interface (MMI) and they store flow tables. 


Moreover, the interface between other data path modules can be used to exchange 


information. 


 


 


Figure 6: Block diagram of FlowCache 


 


Figure 6 shows the top level of the FlowCache. The input and output interfaces are 


AXI4-Stream interfaces. This interface has a low overhead and provides great 


flexibility. Since the FlowCache is designed for low-latency, it consists of pipelines of 


modules with AXI4 interfaces and custom interfaces. It does not provide AXI4-Stream 


backpressure to preceding units to pause their operation. Therefore, it has 


deterministic latency. Moreover, the FlowCache does not introduce any jitter in the 


data path.  


Packets arriving at the FlowCache are parsed and the extracted fields are forwarded 


to the lookup modules. The lookup modules use the extracted fields to find the 


matching rule. In case of multiple matches, the priority encoder selects the highest 


priority rule. Meanwhile, the packets go through the delay pipeline unit. The length of 


this pipeline is fixed and adjusted for the lookup modules. At the end of the pipeline, 


the FlowID information is inserted to the NoC header of corresponding packet. By 


using the FlowID, the NoC action unit modifies certain fields in the NoC header. 


Since the packets are interleaved in the data path, the NoC action unit holds a state 


per input port. The NoC header fields of all segments are modified based on the first 


segment. The current NoC action unit implementation supports dropping with 
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marking the dropping reason and forwarding to an output port that is configured by 


the control processor. 


The flow tables in the lookup modules are configured by the control processor via 


MMI. Moreover, an action table is also programmed by the control processor. Since 


the tables are stored in dual-port BRAMs on FPGA, the configuration of flow table 


entries is done without stopping the packet classification. In other words, the 


FlowCache supports synchronous lookup operation from the flow table entries and 


configuration to the flow table entries.  


The FlowCache supports exact matches with capability of masking fields. However, it 


does not allow masking in the bit level. For example, it is possible to match 


“192.168.14.99”, but not “192.168.*.*”. Prefix matches and range matches are 


converted to exact matches to store in the FlowCache. 


3.3 Search Units 
 


 


Figure 7: Block diagram of hash-based and TCAM-based search units 
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The upper part of Figure 7 shows the hash-based unit and the lower part shows the 


TCAM-based unit. The extracted fields are forwarded to both units. Each unit 


performs independent search on their own rule table and the search results are 


combined by the priority encoder. Although the linear search unit is not shown in this 


figure, it is also integrated with other units in the same way.   


In the FlowCache, rules are partitioned into types based on specified and masked 


fields in the rules. Each combination of specified fields forms a new type. The hash-


based unit supports pre-defined types. These types are hard-coded and it is not 


possible to configure them after the bitstream generation. Similarly, the linear search 


unit only supports the pre-defined types. The pre-defined types are encoded in their 


rule table. These units are called as Exact Match Hardcoded (EMH). Rule type-


specialized matcher is also used interchangeably for EMH. On the other hand, the 


TCAM-based unit supports the types which are configured on run time. These types 


can contain arbitrary combinations of fields. The TCAM-based unit is called as Exact 


Match Arbitrary (EMA). Generic matcher is also used interchangeably for EMA. The 


combination of EMA and EMH provides us a matching circuit for OpenFlow 1.0 in a 


memory efficient way. The implementation details are discussed below. 


3.3.1 Hash-Based 
 


This approach partitions the rule set according to the field that are specified or 


wildcarded. The partitions are searched by using sequential hashing functions. The 


hashing functions realize simple exact match searches over the partitions. Due to 


sequential searches, the number of partitions are limited to four entry types. Although 


this approach is scalable and memory efficient, it does not cover all the rules.    


For each incoming packet, the extracted fields are selected based on four hard-


coded types. The concatenated fields are applied to four hash functions. The hash 


functions reduce the information to 14 bits. The hashing function assure that the 


results spread almost equally over the total range of 16384 values. The next step is 


to use 14-bit hash results to address a hash table. A hash table entry is 9-bit wide 


and stores a pointer to a rule table. A rule table entry contains matching fields for 


each type. Finally, the matched rule table entry is compared against the original fields 


to detect the hash collisions during lookup.  


The four hard-coded types are searched sequentially in the hash-based unit. The 


alternative is to search in parallel for each type. In the parallel approach, all the 


resources (hash function, hash table and rule table) are duplicated for each type. 


Since this approach introduces a lot of memory overhead, we selected the sequential 


approach with four types.   


When the control processor configures a new entry in the hash-based unit, it 


calculates the corresponding hash value and configures the hash table entry and the 


rule table entry. The hash table is introduced to reduce the probability of hash 


collisions during the configuration. Without the hash table, the hash results are 


directly mapped to the rule table. It means that 512 entries are randomly distributed 


over 512 places. In this case, there are many collisions due to hashing. With the hash 


table, the hash results are mapped to the 16384 hash table entries instead of 512 
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rule table entries. The expected number of collisions are reduced significantly by 


introducing the hash table. 


 


 


Figure 8: Example scenario for hash-based unit 


 


Figure 8 shows an example scenario for the hash-based unit. In this example, the 


hardcoded types are the following: 


• Ingress port, source MAC address and destination MAC address for the first 


type, 


• Destination MAC address, ether type, VLAN ID and VLAN priority for the 


second type, 


• Source IP address, Destination IP address and IP protocols and L4 destination 


port for the third type,  


• Ether type, source IP address, destination IP address and IP protocol for the 


fourth type. 


As shown in Figure 8, the hash result results of third and fourth types point to invalid 


hash table entries. Only two candidates are left after the hash table. Since the 


matched entry for the first type has higher priority than the second one’s, Entry1 in 


the rule table is selected as a matching entry. At the last step, the fields in matched 


entry are compared against the original fields. If the comparison result is positive, the 


FlowID information is forwarded to the priority encoder.  


The hash-based unit can store a high number of entries. It scales well with number of 


entries. The memory overhead is relatively small compared to other methods. On the 


other hand, there are limited entry types which are pre-defined and cannot change on 


run time. The rule set analysis in Section 3.5 justifies that most of the rules in practice 
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are mappable to the hash-based unit since the pre-defined types are selected based 


on dominant rule types in the network. 


3.3.2 Linear Search 
 


 


Figure 9: Block diagram of linear search unit 


 


Figure 9 shows the architecture of the linear search unit. The Collision table is 


searched in a sequential manner. Each collision table entry is compared against the 


original fields. If the comparison result is positive, the corresponding FlowID 


information is forwarded to the priority encoder. In case of multiple matches in the 


collision table, the one with the highest priority determines FlowID. 


The linear search unit is used as a back-up unit in case of a collision in the hash-


based unit during configuration of an entry. When the control processor attempts to 


configure an entry in the hash-based unit, the hash value of the desired entry is 


calculated and checked if the corresponding hash table entry is free. If the entry is 


already occupied, the control processor configures a free entry in the collision table. If 


all entries in the collision table are already occupied, the TCAM-based unit can be 


used as a back-up unit in case of collision in EMH. The size of the collision table is 


selected as eight, which is the expected number collisions when configuring 512 


entries in the hash based unit. The details are explained in the section of hash 


collision analysis. 


There are two different implementation options for a linear search unit. The one with 


a single physical memory cannot be fully pipelined since there is only one memory 


interface to access the entries. Other option is to use multiple physical memories to 


access the entries simultaneously. Although this option is fully pipelined, it allocates 


several BRAMs on FPGA. Therefore, our implementation allocate only one BRAM to 


store the collision table entries. The linear search unit stores a low number of entries 


due to the sequential search. Increase in the number entries cause the latency to 


increase linearly. Therefore, it is only reasonable to use linear search method with 


few entries.  
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3.3.3 TCAM-based  
 


Like decomposition based approaches, the TCAM-based unit decompose the multi-


field search into individual single field searches. By using hash functions, it performs 


independent searches on each packet field, then combine the results. TCAM 


provides us the flexibility of masking any field. By this way, it is possible to define 


unique types for each entry. The hash-based unit only supports 4 types, whereas the 


TCAM-based unit allows 4K different rule types to be configured. In other words, all 


the combinations of fields can be configured on run time in the TCAM-based unit.  


The 12-tuple, which are the match fields of OpenFlow 1.0, are extracted and 


forwarded to the TCAM-based unit. Independent hash functions are performed on 


each field and the results are concatenated. The concatenated result is applied to the 


TCAM as a key. If the applied key matches an entry in the TCAM, the entry location 


is used as a pointer to the rule table. If there are multiple matches in the TCAM, the 


one, which has lowest address, is selected. Finally, the fields in the matched rule 


table entry is compared against the original field values. If the comparison result is 


positive, the FlowID information is sent to the priority encoder. Otherwise, the TCAM-


based unit does not assign any classification result.  


Dissimilar to the hash-based unit, the concatenation is performed after the hash 


functions. By this way, the location information of each field is preserved although 


some information is lost due to hashing. This allows us to mask any of the fields by 


using masking feature of the TCAM. When the control processor configures an entry 


in the TCAM-based unit, a free TCAM entry is configured with the mask field and the 


key field and then the corresponding rule table entry is configured. For example, if the 


control processor configures an entry that specifies only the ingress port and masks 


all other fields, a free entry in TCAM is configured in a way that only ingress port is 


used for matching by masking other fields. This type entries can be used to forward 


flows from a physical port to a virtual port or vice versa.  


 


Table 4: ID lengths of TCAM-based 


Header Field Field Length (bit) ID length (bit) 


Ingress Port 5 5 


Source MAC address 48 8 


Destination MAC address 48 8 


Ethernet type 16 4 


VLAN ID 12 4 


VLAN priority 3 3 


IP source address 32 8 


IP destination address 32 8 


IP protocol 8 4 


IP type of service 6 3 


L4 source port 16 4 


L4 destination port 16 4 


Total 242 63 
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Table 4 shows the header fields with ID lengths. ID is used interchangeably for a 


hash result. The hashing functions compress the header fields from 242 bits to 63 


bits. Indeed, the TCAM has 64-bit key, but one bit is reserved for IPv6 support, which 


will be implemented in the future. Hashing function is not performed for ingress port 


and VLAN priority fields because these header fields contain few bits.  


When configuring the entries in the TCAM-based unit, the collisions in the address 


space of TCAM key is also possible due to the nature of hashing. However, our hash 


collision analysis shows that the probability is very low. There is no collision table to 


resolve the configuration collisions in the TCAM-based unit.  


 


 


Figure 10: Example scenario for TCAM-based unit 


 


Figure 10 shows an example scenario for the TCAM-based unit. Ingress port and 


VLAN priority fields are not hashed, so their IDs are same as their original values. 


Other fields are hashed and then all results are combined as a key to the TCAM. This 


key matches the TCAM entry that masks the 9 fields, which are shown in the figure. 


In other words, this TCAM entry is configured by the control processor so that ingress 


port, source MAC address and destination MAC address are specified. The 


corresponding rule table entry stores only specified fields. Finally, the specified fields 


in the rule table entry is compared against the original field values to detect lookup 


collisions. 


The advantage of the TCAM-based unit is capability of field masking. We can store 


any rule that is arbitrary combinations of fields. The rule types can be changed on run 


time by configuring the TCAM and the rule table. On the other hand, the TCAM 


implementation on FPGA is not scalable with the number of entries. We could not 


meet our timing requirements for the design that has more than 128 TCAM entries. 
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However, parallel TCAMs with pipelining can be used to store more than 128 TCAM 


entries at the expense of latency.  


3.4 TCAM Implementation 
 


Ternary Content Addressable Memory (TCAM) is a specialized memory where each 


bit can be “0”,”1” or “don’t care”. Random Access Memory (RAM) returns the value of 


a given address, whereas TCAM returns the address of a given key value. For each 


input key, it performs parallel searches over all stored values and finds the matching 


entries. In TCAM, the location of matching words usually determines the priority in 


case of a multiple matches. For example, the entry in the lowest address has the 


highest priority in my TCAM implementation.   


 


 


Figure 11: Different approaches for TCAM implementation 


 


The key component for the TCAM-based unit is a ternary content addressable 


memory. Therefore, we investigate different approaches for TCAM implementation to 


meet our requirements. Figure 11 shows the investigated approaches in a 


hierarchical graph.  


Most of TCAMs are implemented as an application-specific integrated circuit (ASIC). I 


called them hard TCAMs. Because it is not possible to change their specification after 


manufacturing. ASIC-based TCAMs provides the search result in a single clock cycle. 


They can work with high clock frequency. However, they are expensive and power 


hungry. Moreover, their limited configurability does not fit the requirements of 


OpenFlow packet classification. Since the key length and the number of entries are 


fixed in ASIC-based TCAMs, they don’t provide required flexibility for multi-field 


packet classification.  


Unlike ASIC-based TCAMs, FPGA-based TCAMs provides the flexibility that is 


required for OpenFlow packet classification. Since FPGA-based TCAMs are 


reconfigurable, I call them soft TCAMs. Brute-force implementations mimic the ASIC-


based TCAM architecture. The words are stored in distRAM or registers and parallel 


search over all stored words performed. They suffer from significant degradation in 


an achievable clock frequency when the number of entries increase. Because, the 







Page | 28 


parallel search over all the words cause high fanout. In addition to this, priority 


encoding increases the critical path in brute-force TCAMs.  


Algorithmic TCAMs emulates TCAM behavior by employing various heuristic 


methods. Various solutions have been proposed as alternative to TCAM [23]. 


Because of heuristic methods, their performance is not deterministic and it is often 


dependent on the characteristics of the data set. On the other hand, Axonerve [24] 


has deterministic latency and scales well with the number of entries. But, it is not 


exactly equivalent to TCAM. There are limitations in the masking capability of 


Axonerve. The details about Axonerve is discussed in the section of FlowCache with 


Axonerve. 


I implemented a RAM-based TCAM by using the Xilinx application note [25]. RAMs 


are employed to emulate the TCAM behavior. This approach provides better timing 


than brute-force approaches and thus it scales better with number of entries. 


However, it consumes more memory and takes several clock cycles to configure an 


entry. As a result, there is a trade-off between the achievable clock frequency and the 


memory expansion for a RAM-based TCAM. 


To analyze the structure of our TCAM we have the following definitions: 


• The depth of a TCAM is equal to the number of entries and denoted as 𝑁. 


• The width of a TCAM is equal to the key length and denoted as 𝑊. 


• The address width of a RAM is denoted as 𝑑. Note that 𝑁 = 2𝑑 for the number 


of entries in a RAM.  


• The structure of a TCAM or a RAM is denoted as 𝑁 𝑥 𝑊. For example, 2x3 


RAM consist of 2 words where each word is 3-bit.  


The search operation in 𝑁 𝑥 𝑊 TCAM can be considered as mapping a 𝑊 bit input 


key to 𝑁 bit match vector where each bit shows the match status of corresponding 


entry. By using this idea, 𝑁 𝑥 𝑊 TCAM can be implemented by using a 2𝑊 𝑥 𝑁 RAM. 


The input key is used as the address to access the RAM and each word stores a 𝑁 


bit match vector.  


 


 


Figure 12: 1x1 TCAM implementation by 2x1 RAM 


 


As shown in Figure 12, 1x1 TCAM can be implemented by using a 2x1 RAM. The 


first entry in 2x1 RAM is denoted by RAM[0] and the second one is denoted by 


RAM[1]. TCAM[0] denotes the entry stored in 1x1 TCAM.  
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Table 5: A ternary bit in RAM 


TCAM[0] RAM[0] RAM [1] 


0 1 0 


1 0 1 


X 1 1 


  


Table 5 shows how to map a ternary bit to 2x1 RAM. When don’t care bit (‘X’) is 


stored, the match vector is always ‘1’ no matter the input 1-bit key is ‘0’ or ‘1’. 


Although this approach is very scalable in terms of timing constraints, it requires huge 


amount of memory for wide input keys. The memory requirement grows exponentially 


with the key length. An alternative solution using multiple narrow TCAMs to 


implement a wide TCAM. For example, a 𝑁 𝑥 2𝑊  TCAM can be implemented by 


using two 𝑁 𝑥 𝑊 TCAMs. During lookup, a 2𝑊 input key is divided into two equal 


segments. Each of narrow TCAMs matches segments of the key and outputs a 𝑁 bit 


match vector. The two match vectors are then bitwise ANDed to obtain the final 


match vector. By this way, the total memory requirement becomes 2𝑊+1 𝑥 𝑁 instead 


of 22𝑊 𝑥 𝑁. The goal of populating multiple narrow TCAMs is to reduce the memory 


requirements. On the other hand, bitwise ANDing the match vectors limits our timing 


capability due to the long routing latency on FPGA. Additionally, the update time also 


increases when adding extra narrow TCAMs. 


 


 


Figure 13: 128x64 TCAM implementation by 16 128x16 RAM without update logic 


 


Figure 13 shows our 128x64 TCAM implementation by using 16 separate RAMs. 


Each RAM entry stores 128-bit matching vector. For each search operation, the input 


key is divided into 16 equal segments. The small segments are used as pointers to 


retrieve the stored matching vector information from the RAMs. The matching vectors 
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are ANDed and forwarded to the priority encoder. In case of multiple matches, the 


priority encoder selects the one with the lowest address.  


Updating the TCAM can be either adding or deleting a specific TCAM entry. Updating 


the TCAM entry takes 16 clock cycles. Although all RAMs are updated in parallel, 16 


entries for each RAM are updated at worst-case. However, searching only cost a 


single clock cycle since it requires only a RAM access. The SRL16E [26] is used as a 


memory unit in our implementation. The SRL16E primitive is mapped to SliceM LUT 


in our FPGA.   


 


Table 6: Results of TCAM implementations with different sizes 


TCAM size 
(depth x width) 


Logic LUTs 
(Util%) 


Memory LUTs 
(Util%) 


Registers 
(Util%) 


Critical Path 
(ns) 


16 x 8 103 (0.08%) 64 (0.14%) 32 (0.01%) 5.083 


32 x 16 167 (0.12%) 256 (0.55%) 111(0.04%) 7.853 


32 x 64 383 (0.28%) 1024 (2.22%) 149 (0.05%) 8.656 


128 x 16 412 (0.31%) 1024 (2.22%) 119 (0.04%) 9.486 


128 x 64 661 (0.49%) 4096 (8.87%) 359 (0.13%) 10.200 


128 x 64* 670 (0.50%) 4096 (8.87%) 359 (0.13%) 9.880 


 


Table 6 shows the resource utilization of TCAM implementation with different sizes. 


The timing results are also shown in the last column. The last column shows the 


results with the area constraint. The area constraint is introduced to reduce the 


routing delay. The results are provided for Artix-7 (xca200tfbg676i) with speed grade 


-2 by using Vivado 2015.4.  


In general, the resource utilization increase linear with the number of TCAM bits 


stored. Each memory LUT is capable storing two TCAM bits. By comparing the 


results of 32x64 and 128x16, I conclude that the increase in TCAM depth costs more 


logic LUTs and less registers than the increase in TCAM width does.  


Figure 14 shows the timing results for different TCAM sizes. The x-axis shows the 


critical path and y-axis shows the corresponding TCAM configurations. The critical 


path increases with the number of bits stored in TCAM. In other words, the design 


does not scale well with the number bits due to the degradation in achievable clock 


frequency. The TCAM that stores more than 128 entries did not meet our timing 


results and thus did not result in a usable design. 


The clock of TCAM is 100 MHz clock whose period is multiple of 200 MHz data path 


clock. This frequency is selected to work with aligned clocks. As shown in Table 6, 


the TCAM design with the area constraint meet the timing requirement. Synchronous 


clock domain crossing is implemented between 200 MHz data path clock and 100 


                                              


 


 


*  The design is implemented by creating area constraint to reduce routing congestion. The area 
constraint is realized in FPGA by drawing pblock.  
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MHz TCAM clock. The TCAM entries are configured by the control processor via a 


memory-mapped interface (MMI). Asynchronous clock domain crossing is also 


implemented between 125 MHz MMI clock and 100 MHz TCAM clock. 


 


 


Figure 14: Timing results for different TCAM sizes 


 


Input and output registers are also added to the TCAM design to decouple the critical 


path from the rest of design. They add more latency to the latency of the TCAM-


based unit. However, the design is pipelined. New input can be applied to the TCAM-


based unit in each 2 clock cycles because of the clock domain crossing between the 


data path clock and the TCAM clock.    


3.5 Rule Set Analysis 
 


Network devices has evolved to accommodate a variety of services, including real-


time video communication, sensor networking and computer-to-computer 


communication. Depending on the applications, the characteristics of rule sets can 


vary significantly. For example, edge routers usually deal with exact matches 


whereas core routers usually deal with prefix matches. Since the optimal packet 


classification method also depends on the characteristics of rule set, we analyze the 


characteristics of rule sets that are deployed in a data center. Due to security issues, 
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access to real rule sets is not possible for our research. Therefore, we used synthetic 


rule sets which model the properties of a real rule set. 


Classbench [27] has been widely used to evaluate packet classification algorithms. It 


generates only synthetic Ipv4 rule sets. These sets are designed according to 


traditional packet classification. FRuG [28] also generates rule sets by using user 


inputs. The user has full control over the properties of rule sets. Although it is 


possible to generate OpenFlow rules with FRuG, we could not generate accurate rule 


sets which models the properties of real ones. We used Classbench-ng [29] to 


generate OpenFlow 1.0 rule sets. The tool also provides 2 different seeds which are 


based on an in-depth analysis of OpenFlow deployment in a data center. The seeds 


contain the relevant statistics and probability distributions. By using these seeds, it is 


possible to generate accurate OpenFlow 1.0 rules whose characteristics are similar 


to the real ones.  


 


 


Figure 15: Block diagram of rule set analysis 


 


Figure 15 shows the block diagram of rule set analysis. The OpenFlow seed specifies 


the statistical properties of the matching fields for OpenFlow 1.0. The statistical 


properties are based on a set of OpenFlow switches running in a data center 


environment. There are two OpenFlow seeds provided by the tool: “of1_seed” and 


“of2_seed”. For our analysis, we use “of1_seed”. Classbench-ng accepts the input 


seed and the user configuration file which specifies the structure and the size of rule 


tables. It outputs a rule set as close as a real rule set. In order to do accurate 


analysis, 10000 rule sets are generated. Each rule set has 1K OpenFlow rules. Since 


VLAN fields and IP type of service field are not used by the input parameter file, the 


output rules have 9 packet header fields which are specified by OpenFlow 1.0.  


My analysis code, which is written in Python, extracts the characteristics of synthetic 


rule set. Our goal is to understand certain features of OpenFlow rule sets to optimize 


our packet classification method. Although the network configuration plays a key role 


for the rule sets, it is possible to analyze some statistical distributions by using 


synthetic rules sets, such as OpenFlow rule type distribution and IP prefix length 


distribution.  
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Figure 16: Header field distribution in the rule sets 


 


Figure 16 shows the distribution of header fields which are specified or masked in the 


rule sets. The x-axis shows 12 OpenFlow header fields and the y-axis shows the 


distribution of them. For example, 90 percent of the rules specifies destination MAC 


address and 10 percent of them does not have destination MAC address. It means 


10 percent of them mask the destination MAC address. Since the analyzed network 


configuration does not use virtual LANs and differentiated service for IP, VLAN id, 


VLAN priority and IP type of service fields are never used in the rules. Although the 


header field distributions depend on the network configuration, I believe that this 


analysis is important to understand the difference between OpenFlow rules and the 


rules that are used by traditional packet classification. OpenFlow allows fine-grained 


rule declaration. In other words, any combination of fields can be defined as an 


OpenFlow rule.  


I also analyze the relationship between header fields in the rules. It is important to 


analyze which fields are more likely to be specified together in a rule. I have the 


following definitions which are introduced by [29]: 


• Rule type is a template that indicate which headers fields are specified by a 


rule. In theory, there are 4096 possible different rule types in OpenFlow 1.0 


since OpenFlow 1.0 classify packets using 12 fields. 


• Rule type number is a 12-bit number where each bit corresponds a header 


field. If the bit is set to ‘1’, the corresponding field is specified by this rule. 







Page | 34 


Otherwise, the field is masked by the rule. The bits are associated the fields 


in the following order: in_port, mac_src, mac_dst, eth_type, vlan_id, 


vlan_prio, ip_tos, ip_proto, ip_src, ip_dst, l4_src and l4_dst. The most 


significant bit refers to in_port and the least significant bit refers to l4_dst. 


For example, “0000000000001100” bit vector (rule type 12) refers to the 


combination of IP destination and source addresses. Other 10 fields are 


masked in this rule type.  


 


 


Figure 17: Rule type distribution in the rule sets 


Figure 17 shows the result of my rule type analysis. The x-axis represents the rule 


type number with the encoding defined above and the y-axis represents the 


distribution of rule types. For example, rule type 789 refers the rules that specifies 


mac_dst, eth_type, ip_proto, ip_dst and l4_dst. 20 percent of the rules are 


represented by rule type 789. Although there are 4096 possible rule types, only small 


number of rule types are used in practice. Indeed, four of them are the most common 


ones. I exploit this observation to design the FlowCache. The most 4 common rule 


types are stored in a memory efficient data structure, whereas other rule types are 


supported by a flexible data structure. 


The rule type distribution heavily depends on the network configuration. Therefore, 


the most common rule types vary from one network to the other. By monitoring the 


rule type distribution for a network, the most used rule types can be easily 


determined. If the rule type distribution change significantly over time, the analysis 


should be repeated to find the four most used rule types. When the network policy 
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changes significantly, the FlowCache should be generated again so that the four 


most used rule types are mappable to the rule type-specialized matcher (EMH).  


The rule type definition is same as the type definition in the FlowCache. The 


FlowCache partition the rules into types based on the specified fields in the given rule 


set. Each combination of 12-tuple forms a new type.  


As discussed in search unit section, the FlowCache consist of two parts: Exact Match 


Hardcoded (EMH) and Exact Match Arbitrary (EMA). EMH is designed to support 


only four types, whereas it is possible to map all types to EMA. EMH can store a high 


number of entries without significant memory overhead. The four most common rule 


types are mapped to EMH and the rest of rule types are mapped to EMA. EMH rule 


types are shown in Table 7. The rule types, which are not shown in Table 7, are 


mapped to EMA. The EMH entry types are optimized for the network that I analyzed. 


The rule types should be changed for a different network so that the most rule types 


can be supported by EMH. 


 


Table 7: EMH entry types 


EMH type Rule type number Header fields 


Type 1 796 mac_dst, eth_type, 
ip_proto, ip_src, ip_dst 


Type 2 789 mac_dst, eth_type, 
ip_proto, ip_dst, l4_dst 


Type 3 524 mac_dst, eth_type, ip_dst 


Type 4 512 mac_dst 


 


 


Figure 18: FlowCache entry types in the rule sets 
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Figure 18 shows the distribution of EMH entry types and the distribution of  EMA 


entry types in the analyzed rule set. When the four most common rule types are 


mapped to EMH, EMH can store 88 percent of rules. By this way, we can cover most 


of the practical scenario in EMH. The rest of rules are mapped to EMA. This analysis 


justifies the idea of our packet classification method.  By combining the rule type-


specialized matcher (EMH) and the generic matcher (EMA), OpenFlow rules can be 


stored on FPGA in an efficient way. 


 


 


Figure 19: Match type distribution of IP destination and source addresses in the rule sets 


 


As shown in Figure 19, IP fields are mostly specified by exact match in the rule sets. 


These types of matches are directly mapped to the FlowCache. Since the FlowCache 


also supports field masking, the rules that does not specify IP fields are also 


mappable to the FlowCache without further processing.  However, the rules that 


contain any prefix match are not directly mapped to the FlowCache. The control 


processor converts prefix matches to exact matches based on the active flows in that 


time. The converted rules are mapped to the FlowCache. Our analysis shows that 


only 1-2 percent of rules contain prefix matches in the rule sets.   


 


3.6 Hash Collision Analysis 
 


Since EMH (hash-based) and EMA (TCAM-based) use hashing functions to 


compress the packet header fields, hash collisions are inevitable. The purpose of 


hash collision analysis finds out the expected number collisions during configuration 


of entries in the FlowCache. Based on the expected number of collisions, the backup 


unit is designed to compensate for the hash collisions.    


When the control processor configures a new entry in EMH, the hash value for the 


entry is calculated and the corresponding entry is checked whether it is free or not. If 


the hash result collides with one of the stored entry, the hash table entry is occupied. 


In this case, the entry is added to the collision table. The size of the collision table is 







Page | 37 


adjusted based on the expected number of collisions in EMH. The hash table is 


introduced to reduce the probability of collisions. Similarly, the hash results for each 


field are calculated to configure a new entry in EMA. If there is a TCAM entry 


matching with a new entry, the new entry collides with the old one. In this case, the 


new entry cannot be added to EMA without deleting the old one. However, our 


experimental analysis shows that the probability in EMA is so small that it does not 


affect the performance of EMA. 


There are also hash collisions during lookup operation in EMH and EMA. When 


packet headers are hashed, some information is lost due the nature of hashing. A 


packet might match a wrong rule table entry after the hashing function. However, the 


collisions during lookup are detected by comparing the matched rule table entry 


against the original packet headers. If the comparison result is negative, the packet is 


not classified in the FlowCache. 


 


3.6.1 Analytical Analysis 
 


Hash collisions can be modeled by the birthday paradox [30]. In a set of randomly 


chosen people, some pair of them might have the same birthday. The birthday 


paradox analysis focus on the probability of having the same birthday. The expected 


number of people having the same birthday can be calculated by the following 


formula: 


∑ 𝑞(𝑘 − 1; 𝑑) = 𝑛 − 𝑑 + 𝑑
(𝑑 − 1)𝑛


𝑑𝑛


𝑛


𝑘=0


 


• 𝑛 is the number of people. 


• 𝑑 is the number of days in a year. 


We can adapt the formula for the expected number of collisions in EMH by making 


some fair assumptions. Assuming that 512 EMH entries are randomly distributed 


over 16384 hash table entries, we can calculate the expected number of collisions by 


using the above formula with the following parameters: 


• 𝑛 is the number of entries in EMH, which is 512. 


• 𝑑 is the number of entries in the hash table, which is 16384. 


The expected number of collision in EMH is calculated as 7.9 when configuring 512 


entries where the hash result is 14-bit length. The assumption we made is that the 


hash results are spread with equal distribution over hash table entries. In practice, 


there are dependencies between the hash results.  


The same analytical analysis for EMA does not give a meaningful result because the 


entry configuration with masking fields introduce huge dependency between the hash 


results.  
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3.6.2 Experimental Analysis 
 


 


Figure 20: Block diagram of experimental analysis for hash collision  


 


Figure 20 shows the block diagram of the experimental analysis. The setup of the 


experimental analysis is almost same as the setup of the rule set analysis. The rule 


set analysis module is replaced with the FlowCache model. This module implements 


hashing functions and storage of rules in the same way that the FlowCache does. In 


other words, the FlowCache is implemented in VHDL for FPGA, the FlowCache 


model is implemented in Python to emulate the behavior of FlowCache for hash 


collision analysis. This experiment is repeated 10000 times to get more realistic 


results.  


 


 


Figure 21: (a) Collision histogram for EMH when configuring 512 entries (b) collision histogram 
for EMA when configuring 128 entries 


 


The entries types in Table 7 are mapped to EMH by using the synthetic rule sets. 


This experiment is repeated 10000 times and the number of collisions are recorded 


when configuring table entries for each experiment. Figure 21(a) shows the collision 


histogram for EMH when configuring 512 entries with 14-bit hash length. For 


example, 15 percent of the experiments end up with 7 collisions for the configuration 


of 512 EMH entries. By averaging the experimental results, the expected number of 


collisions is calculated as 7.95 for 512 EMH entries and 14-bit hash length. The 


theoretical and experimental results for EMH converges to each other. This justifies 


that the hash results, which are generated with our hashing function, are randomly 


distributed over the hash table entries for the synthetic rules.  


Figure 21(b) shows the collision histogram for EMA when configuring 128 entries 


where the hash length is 64-bit. The entry types that cannot be mapped to EMH are 
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mapped EMA in this experiment. When the control processor configures a new entry 


in EMA, the collisions happens in the address space of the TCAM key. If the new key 


with its masking fields matches with the one of existing entry in the TCAM, it is 


recorded as an EMA collision. By averaging the number of collisions in EMA, the 


expected number of collisions is calculated as 0.45 for 128 EMA entries where the 


TCAM key length is 64-bit. We conclude that the probability of collision in EMA is 


very low, it does not affect the performance of EMA severely. 


 


 


Figure 22: Expected number of collisions with respect to hash length and hash type when (a) 
configuring 512 EMH entries and (b) when configuring 128 EMA entries 


 


I repeated the hash collision experiment for different hash lengths and hash types to 


find the optimal configuration. Figure 22 shows the expected number of collisions of 


EMH and EMA for different hash lengths and hash types. The y-axis shows the 


expected number of collisions and the x-axis shows the hash length. “HashType0” is 


implemented by XOR functions without bit shuffle, which is the default one. 


“HashType1” is implemented by XOR functions with bit shuffle. The bit shuffle is 


introduced to add randomization to hash functions. However, the results show that 


the bit shuffle does not decrease the expected number of collisions. The expected 


number of collisions can be decreased by increasing the hash length. Since the hash 


results are mapped to bigger address space, the probability of collision decreases 


with the increase in hash length. The FPGA implementation has 14-bit hash results 


for EMH and 64-bit hash results for EMA.  
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Figure 23: Expected number of collisions with respect to number of entries in EMH and EMA  


 


Figure 23 shows the expected number of collisions for different tables sizes of EMH 


and EMA. The y-axis shows the expected number of collisions and the x-axis shows 


the number of entries. As shown in the figures, the expected number of collisions 


increase linear with the number of entries stored in EMH and EMA. 512 EMH entries 


and 128 EMA entries are selected as the default table sizes.  


 


3.7 Evaluation 
 


This section is divided into two subsections: 


• FlowCache Results: The latency of each module in the FlowCache is 


analyzed. The resource utilization on FPGA is shown in this subsection. 


Moreover, the throughput and the power consumption are given. All the 


analyses are done for default table sizes, which are 8 linear search entries, 


128 TCAM-based entries and 512 hash-based entries.   


• Search Units Results: The search time of hash-based, linear search and 


TCAM-based units are compared for different table sizes. The throughputs of 


search units are also calculated based on their pipeline implementation. 
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3.7.1 FlowCache Results 
 


Table 8: Latency results of modules in FlowCache 


Module Latency (CC) Latency (ns) 


Parser 9 45 


Hash-based 11 55 


Linear Search 11 55 


TCAM-based 10 50 


Priority Encoder 2 10 


Data Pipeline 24 120 


NoC Action Unit 5 25 


 


Table 8 shows the latency results of main modules in the FlowCache. This analysis is 


done for default table sizes. Although the lookup modules have varying latencies, 


their latencies are comparable to each other. In order to keep the design simple, the 


output of TCAM-based unit is delayed for one clock cycle so that the outputs of 


lookup modules are aligned.  


 


Figure 24: Block diagram of FlowCache with latency analysis for default table sizes 


 


Figure 24 shows the latencies of each module on the block diagram. The parser 


waits for the relevant header fields to extract the information from incoming packets 


and then triggers the search units. Hash-based and linear search units give the 


results after 11 clock cycles, whereas TCAM-based unit give the result after 10 clock 


cycles and wait for 1 clock cycle to align with other search units. The priority encoder 


is pipelined with registers to meet our timing requirement, so the priority encoding 


takes 2 clock cycles. The delay pipeline consists of two units, the one delays AXI 


input for 22 clock cycles and the one assigns the FlowID information to 
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corresponding packets. Finally, the NoC action unit modifies the NoC header in 5 


clock cycles.  


 


Table 9: Latency, throughput, and power dissipation of FlowCache with default table sizes 


Latency (ns) Throughput (Gbps) Power Dissipation (W) 


145 12.8 0.320* 


 


Table 9 shows overall latency, throughput, power dissipation of the FlowCache, 


which works with 200 MHz clock. The overall latency of FlowCache is 29 clock 


cycles, which is equal to 145 ns. The AXI input and output interfaces have 64-bit 


data. The FlowCache is designed for the worst case, which is there is no gap 


between the segments in the data path. Therefore, the FlowCache supports 12.8 


gigabits per second. The power dissipation of FlowCache is 0.32 Watt according to 


the implementation results in Vivado 2015.4.   


  


Table 10: Resource utilization of FlowCache with default table sizes 


Resource Type Used Available Utilization (%) 


LUTs 5932 134600 4.41 


Registers 3116 269200 1.16 


BRAM tiles 22.5 365 6.16 


 


Table 10 shows the resource utilization of FlowCache based on the implementation 


results in Vivado 2015.4. Target device is Artix-7 (xca200tfbg676i). These results 


justify that multiple FlowCache can be easily used in this size of FPGA. By using 


multiple instances of FlowCache in parallel, the throughput can be increased. 


Moreover, Sequential lookup tables can be implemented by cascading FlowCache 


instances.  


BRAM tiles are used by the hash-based unit and the linear search unit. By analyzing 


the relative utilization of BRAM tiles, I conclude that EMH can store up to 8K 


OpenFlow rules by using BRAMs in our FPGA. Similarly, EMA is based on memory 


LUTs since our TCAM implementation stores the entries by using SRL16E primitives 


in FPGA. By comparing the relative utilization of TCAM in Section 3.4, I conclude that 


EMA can store up to 1K entries in our FPGA. The bottleneck for scalability of EMA is 


the timing constraints in TCAM. This problem can be solved by pipelining and using 


multiple TCAM instances in parallel at the expense of latency.        


 


 


                                              


 


 


* The power dissipation value is taken from the power dissipation report of Vivado 2015.4. It should be 
taken with a grain of salt because they don’t show realistic power dissipation values. 
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3.7.2 Search Units Results 
 


 


Figure 25: Latency results of search units for different table sizes 


 


Figure 25 shows the latency results of hash-based, TCAM-based and linear search 


with respect to the number of entries. Our TCAM implementation does never meet 


our timing requirements for more than 128 TCAM entries. Therefore, the maximum 


number of entries is 128 in the figure. Moreover, the latency of linear search is not 


comparable to others for more than 128 linear search entries.  


As shown in Figure 25, hash-based unit has a constant latency, which is equal to 55 


ns. The TCAM can work with 200 MHz clock for 8,16 and 24 entries, so clock domain 


crossing is not required. The latency for these sizes is 35 ns. The clock frequency of 


TCAM is selected as 100 MHz to align with 200 MHz data path clock for more than 


24 TCAM entries. The latency increases to 50 ns for more than 24 TCAM entries. 


The latency of linear search with 8 entries is 55ns, which is equal to the latency of 


hash-based unit. The latency of linear search increases linear with the number of 


entries. I conclude that linear search is only reasonable for small table sizes. The 


latencies of search units should be comparable to each other in order to use them in 


parallel. Thus, 8 entries in the linear search unit, 128 entries in TCAM-based unit and 


1024 entries in the hash-based unit are implemented on FPGA.  
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Figure 26: Throughput results of search units for different table sizes 


 


Figure 26 shows the throughput results of search units for different table sizes. The y-


axis shows the throughput in terms of million packets per second (Mpps) and the x-


axis shows the number of entries.  


Hash-based unit can accept new search request in each four clock cycles. Because it 


is not fully pipelined due to four different entry types. The alternative is to use multiple 


hash tables and rule tables to search in parallel for each entry type. TCAM-based unit 


is fully pipelined for 8,16 and 24 entries and can accept new input in each clock 


cycle. However, it accepts new input in each 2 clock cycles for more than 24 entries 


due to the clock domain crossing. There are two different alternatives for linear 


search implementation. The linear search unit sharing resources stores the entries in 


a single BRAM, whereas the one with separate sources stores each entry in different 


BRAMs on FPGA. Since the physical memories are limited on FPGA, the resource 


sharing is required for FPGA designs. The throughput of the one sharing resources 


decreases with the number of entries. On the other hand, the one with separate 


sources has constant throughput. The linear search unit is implemented with 8 


entries, which are stored in a single BRAM. The hash-based unit stores 512 entries 


on FPGA and the number of entries can be increased in the hash-based unit without 


sacrificing the performance. The TCAM-based unit stores 128 entries on FPGA. The 


bottleneck is the TCAM implementation that does not scale with the number of 


entries.   
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4. TrustNode as OpenFlow Switch 


4.1. Architecture 
 


 


Figure 27: TrustNode as an OpenFlow switch 


 


As shown in Figure 27, TrustNode can be used as an OpenFlow switch. It consists of 


two main parts, the OpenFlow accelerator implemented in the FPGA and the 


OpenFlow agent in the control processor. There are 3 main functional units in the 


FPGA for the accelerator, which are match unit, action unit and statistics collection 


unit. In the control processor, Open vSwitch implements the OpenFlow protocol and 


stores the flow tables that are configured by a OpenFlow controller. The mapping 


software maps flow table entries from Open vSwitch to the accelerator on FPGA. 


It is a hardware-software co-design approach for an OpenFlow switch. High 


performance data processing is done in the FPGA, while complex OpenFlow protocol 


implementation and big flow tables can reside in the processor. In other words, the 


hardware accelerator offloads the control processor for packet processing and the 


control processor is mainly responsible for management functions.  
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Figure 28: Slow path and fast path in TrustNode 


 


The goal of hardware acceleration is to improve the average performance of packet 


classification in TrustNode.  The idea is that active and elephant flows are forwarded 


by the FPGA without interrupting the processor. In the fast path, the packets entering 


the FPGA from one of the Ethernet ports are processed on the FPGA and forwarded 


to another Ethernet port. If the packet header fields do not match any of flow table 


entry in the FPGA, they are forwarded to the control processor. These packets go to 


the slow path in TrustNode. The slow path and the fast path are shown in Figure 28. 


4.2. Software 


4.2.1. Open vSwitch 
 


Open vSwitch [32] is a software switch with OpenFlow support. The main advantage 


of software switches is that they can be upgraded more easily than hardware 


switches. It is designed for flexibility and general-purpose usage. It is not possible to 


achieve high performance without sacrificing generality. Therefore, we combine the 


FlowCache and Open vSwitch to obtain a flexible and high performance OpenFlow 


switch.  


 


 


Figure 29: Components of Open vSwitch [5] 


Open vSwitch consist of two major components for packet forwarding, which are a 


userspace module and a kernel datapath module. The userspace module (ovs-
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vswitchd) implements the OpenFlow protocol and communicates to a OpenFlow 


controller. OpenFlow tables are stored in the userspace module. The kernel datapath 


module is designed to accelerate packet classification by caching active flows. Figure 


29 depicts how the packet classification is implemented in Open vSwitch. The kernel 


datapath module receives the packets from a physical port and forward them directly 


to another physical port if the packet header matches the flow cache in kernel. 


Otherwise, the userspace module determines how to handle the packet and it passes 


the packet back to the datapath.  


OpenFlow controller specifies how to handle packets in Open Vswitch. It is 


specialized for flow-based control of a switch. It does not add or remove ports, 


configure QoS queues, etc. However, this type of configurations can be changed 


over the OVSDB protocol [33] as shown in Figure 29. 


 


 


Figure 30: Open vSwitch forwarding model with microflow cache and megaflow cache [34] 


 


As shown in Figure 30, flow caching in kernel module is implemented by using 2-level 


cache. The primary cache is the megaflow cache, which is structured like OpenFlow 


table. It might have sequential lookup tables and prefix matches. When a packet hits 


in the megaflow cache, the packet is processed faster than the round trip from 


userspace to kernel. However, a lookup in the megaflow cache is still slower than the 


secondary cache, named microflow cache. The microflow cache uses a hash table 


with exact matching. Therefore, it is possible to map the microflow cache entries to 


the FlowCache. The entries in the microflow cache provides us the following features: 


• There is no priority between the entries. Overlapping entries are handled in the 


megaflow cache. Thus, clear discrimination between flows are already 


guaranteed in the microflow cache. 


• Open Vswitch optimizes the flow caching in a way that active flows are stored 


in the microflow cache. 


Our goal is map the microflow cache entries to the FlowCache. Since the entry types 


are same, further processing is not required. The alternative is to map the entries 


from the megaflow cache or from the userspace module of Open vSwitch. In this 


case, extracted flow table entries should be processed to resolve the dependency 


problem between rules. The mapping should consider the semantics of network 


policy. For example, an entry cannot be mapped if there is a more prioritized 
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overlapping entry in the flow table. Otherwise, the semantics of networks are not 


preserved. Naga et al. [35] propose algorithms to decide which rules to cache while 


preserving the semantics of original flow table.   


4.2.2 Mapping Software 
 


The connection between the FlowCache and the Open vSwitch is realized by a 


mapping software. Our goal is map the following flows: 


• active flows, 


• flows with low latency requirement, 


• flow with a high data rate (elephant flows), like video streaming, 


• flows with the highest match priority. 


The rest of flows are mapped only with best effort. The mapping software uses the 


PCIe driver to access to flow table entries on FPGA.  


 


 


Figure 31: Flowchart of mapping software API 
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We wrote an application programming interface (API) for the mapping software. 


Figure 31 shows the flowchart of mapping software API. The extracted flow table 


entries from Open vSwitch are first added to the master table that is a shadow 


memory of entries in the FlowCache. The action table is updated with new entry. If 


the entry is one of the EMH type, it is added to EMH. In case of hash collision in the 


hash-based unit, the new entry is added to the linear based unit. If the entry is not 


one of the EMH types, it is added to the TCAM-based unit. If there is not free entry in 


the linear search unit, the TCAM-based unit can be used as the collision table of the 


hash-based unit.  


It is important to preserve the semantics of original flow tables that are specified by 


the OpenFlow controller. Therefore, the mapping software should assure that the 


FlowCache does not take any wrong action on incoming packets. The current 


mapping software extracts the entries from the userspace module of Open Vswitch. 


Since there are overlapping entries in the extracted entries, the dependency between 


rules should be analyzed before mapping them to the FlowCache on FPGA. 


Otherwise, incoming packets can match low prioritized rules in the FlowCache 


although there are high prioritized matching rules in the control processor.   


 


4.3 Hardware 
 


I use a complete packet processing infrastructure in the FPGA. The FPGA design 


contains a configuration that extends the basic functionality of a network interface 


card by routing packets internally. The main function of the FPGA design is to offload 


the processor for OpenFlow packet processing.  


 


 


Figure 32: OpenFlow switch architecture of TrustNode 
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Figure 32 shows an example TrustNode architecture with three physical port and one 


virtual port, which is used for the control processor.  The upper part shows the design 


in the FPGA and the lower part shows the processor subsystem. The FPGA design 


consist of register pipelines which forwards packets from left to right and modifies 


them on the fly. All packets are stored in the traffic manager. Rx and TX in the figure 


denotes receive and transmit parts of Ethernet PHYs. The control processor is 


attached as a virtual port via PCIe interface. Ingress processing and egress 


processing are responsible for packet processing. Packets entering the device from 


the network are processed in egress. Egress units process packets exiting the device 


to the network. 


 


 


Figure 33: Screenshot of the logic distribution with the FlowCache design highlighted 


 


Figure 33 shows the screenshot of the logic distribution by using Vivado 2015.4. The 


FlowCache logics are highlighted by red in the figure. The design includes the 


complete packet processing infrastructure that includes the traffic manager, receive 


and transmit MAC units, header creation units, header termination unit etc.  
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There are three main components of the OpenFlow switch design on FPGA: 


• The FlowCache resides in the ingress processing. It performs packet 


classification based on multiple packet header fields. The flow table entries are 


configured by the control processor. The FlowCache also includes the NoC 


action unit, which modifies the NoC header of incoming packets. It is used for 


dropping the packets or forwarding to any physical port or any virtual port. If 


there is no match in the FlowCache, the packet is forwarded to the control 


processor.  


• The counters are used to record the conditions of flow table entries in the 


ingress processing. The number of received packets and received bytes are 


maintained per FlowID and per port. After the FlowCache identifies the 


matching flow table entry, the counters are updated based on the inserted 


FlowID information.  


• The TX router resides in the egress processing after the traffic manager. Its 


main function is to modify packet header fields. It takes the associated actions 


based on the FlowID information coupled with packets.   


 


 


Figure 34: Parallel modules with shared pipeline [31] 


 


As shown in Figure 34, there are three modules attached in parallel in the data path. 


They share the same register pipeline to reduce resource consumption on FGPA. 


The pipeline length is long enough for the module with the highest latency. The 


FlowCache is attached to the Ethernet switch module and the special case unit in 


parallel. The Ethernet switch unit use the standard learning, flooding and aging 


methods for Ethernet bridging. The special case unit marks the packets with 


unsupported protocols on FPGA, like ARP, ICMPv6 etc. These types of packets are 
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forwarded to the control processor, which implements complex and widely diverse 


protocols at a low speed. The special case unit has the highest priority between the 


data path modules. If the special case unit detects a packet with unsupported 


protocol on FPGA, the classification result in the FlowCache become invalid to not 


take wrong actions on the packet.  


In the TrustNode architecture, there are two identical data paths to support worst 


case traffic. Therefore, two instances of the FlowCache will be used to enable SDN 


offloading for all ports. It is important to keep the flow table entries consistent to each 


other. The control processor configures both FlowCache together. The alternative is 


that two instances of the FlowCache share the same memory units for flow table 


entries. In this case, there is no synchronization problem between two instances of 


the FlowCache. Since FPGA offers dual-port BRAMs, this alternative also reduces 


the memory consumption. While one of them is performing lookup operation, other 


FlowCache can access to the BRAM by using the second port. On the other hand, 


two of the BRAM ports are used for lookup operation. When the control processor 


configures a new entry in the FPGA, one of the data paths cannot be served by 


associated FlowCache instance. This problem can be solved by storing the 


configuration information. The stored configuration can be executed when there is no 


lookup operation in one of the FlowCache. The access pattern to memory in the 


FlowCache is deterministic and there are idle time slots. Therefore, two instances of 


the FlowCache can share the same memory unit without sacrificing the performance 


of packet classification.    
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4.4 Test Setup 
 


It is important verify the correctness of an OpenFlow switch. Substantial research has 


been carried out in this direction. OFLOPS [38] is an open and generic software 


framework that permits the development of test for OpenFlow switches. It generates 


benchmark packets and measure the latencies. It can be also used to evaluate 


different OpenFlow switch implementations in terms of OpenFlow protocol as well as 


their performance. The OFLOPS software is used with specialized hardware of the 


NetFPGA-1G platform. OFLOPS-Turbo [39] improved the framework for the 


NetFPGA-10G platform and provides support for 10GbE traffic generation and packet 


capture.    


Since there are still missing parts for fully functional OpenFlow switch feature of 


TrustNode, I tested the packet classification in the FPGA with the mapping software 


API by using my own test setup. 


 


 


Figure 35: Test setup 


 


Figure 35 shows the setup with our target platform, TrustNode. The test bitstream is 


loaded into the FPGA. The flow table entries in the FlowCache are configured by 


using the mapping software API. The control processor is running with our drivers to 


control the data plane. In this test setup, there is no OpenFlow controller, so the 


configuration of flow table entries is done manually by test scripts.   
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Figure 36: Screenshot of packet generator 


 


Test packets are generated by using the network traffic generator [36]. Figure 36 


shows the screenshot of the packet generator. The test packets have various 


protocols, such as IPv4, IPv6, TCP, UDP etc. VLAN-tagged packets are also 


generated to test different packet formats.  


 


 


Figure 37: Screenshot of packet captures 


 


The tests packets are processed by the TrustNode FPGA. Depending on the flow 


table configuration, some of them are dropped by the FPGA and some of them are 


forwarded to different physical ports. The output packets are captured by the network 


traffic analyzer [37]. Figure 37 shows the screenshot of captured packets. 


Functionalities of the FlowCache and the mapping software are verified by manual 


inspection on captured packets.  
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5. FlowCache with Axonerve 


5.5.1 Axonerve Introduction 
 


Axonerve [24] is a memory based algorithmic TCAM emulation on FPGA. The 


algorithmic solution provides us high-speed and low-latency content matching on 


FPGA. Since it has fully pipelined design, it can perform continuous search operation 


with deterministic latency.  


One of the application area of Axonerve is multi-field packet classification. It supports 


field masking for n-tuple header field. Moreover, the entries in Axonerve has a priority 


field. It is possible to add new entries without changing the matching order of existing 


entries in Axonerve.  


There are two operation modes of Axonerve, which are on-chip memory mode and 


off-chip memory mode. In on-chip memory mode, the entries are stored in BRAMs on 


FPGA, while the entry table in off-chip memory mode is stored in an external DDR 


memory.  


 


 


Figure 38: Hardware resource requirements (relative to Virtex7 xc7vx690) for different sizes of 
Axonerve [24] 


 


Unlike other TCAM implementations on FPGA, Axonerve scales well with the number 


entries. Figure 38 shows the hardware resource requirements of for different sizes of 


Axonerve. The y-axis shows the resource utilization relative to the target FPGA and 


the x-axis shows the entry depth. The LUT usage and the register usage are almost 


constant over the graph. Since the table entries are stored in BRAMs on FPGA, the 


BRAM usage increases linear with the entry depth.  


On the other hand, Axonerve is not exactly equivalent to TCAM. It has some 


limitations in masking capability. Unlike TCAM, predefined fields can be masked in 


Axonerve. Moreover, data slice assigned to the first field cannot be masked. This 


restriction conflicts with the fine-grained rule specification of OpenFlow. Since each 


field can be either specified or masked, the rules that masked the first field cannot be 


mapped to Axonerve.  
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5.5.2 Axonerve Integration to FlowCache 
 


One of the important evaluation metrics is scalability of table sizes with the number of 


entries. Although the hash-based unit scales well with the number of entries, the 


TCAM-based unit suffers from achievable clock degradation for large-scale designs. 


Therefore, it is not possible to store a high number of entries in the TCAM-based unit. 


We got a trial version of Axonerve IP to replace our TCAM implementation. Our 


configuration can store up to 1024 entries with 83-bit key length. It has 12 cycles 


search latency with a fully pipelined design. We managed to work with 200 MHz 


clock, which is used in the data path.  


 


Table 11: Field ID assignment of Axonerve 


Field ID Field Length (bit) Mask Capability 


Ingress Port 5 No 


Source MAC address 8 No 


Destination MAC address 20 Yes 


Ethernet type 4 No 


VLAN ID 4 No 


VLAN priority 3 No 


IP source address 8 No 


IP destination address 8 No 


IP protocol 4 No 


IP type of service 3 No 


L4 source port 4 No 


L4 destination port 4 No 


  


Axonerve offers field masking for predefined bit-fields. Table 11 shows the field 


assignments in our trial version of the Axonerve IP. For search operation, the masked 


fields in the entry table match any value of corresponding fields of incoming packets. 


There is a special field without masking capability, which is called as the open field of 


Axonerve.  


As shown in Figure 16, destination MAC address is the most specified fields 


according to my rule set analysis. It is specified in the 90 percent of rules and 


masked in the 10 percent of rules. By assigning the hash result of destination MAC 


address to the open field in the Axonerve, the Axonerve-based unit can cover most of 


the rules. The rules which mask destination MAC address cannot be mapped to the 


Axonerve-base unit. Therefore, the Axonerve-based unit does not support all the rule 


types.  
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Figure 39: Block diagram of FlowCache with Axonerve 


 


In the Axonerve-based unit, the TCAM is replaced with the Axonerve. Figure 39 


shows the block diagram of FlowCache with Axonerve. Like the TCAM-based unit, 


the 12-tuple are hashed and the hashed results are concatenated. The concatenated 


result is applied to the Axonerve as a key. If the applied key matches an entry in the 


Axonerve, the entry location is used as a pointer to the rule table. If there are multiple 


matches in the Axonerve, the priority function in the Axonerve determines which one 


should be selected out of multiple matches. Finally, the fields in the matched rule 


table entry is compared against the original field values. If the comparison result is 


positive, the FlowID information is sent to the priority encoder. 


Dissimilar to the TCAM-based unit, the configuration of entries disables the packet 


classification in the Axonerve-based unit. Because, the Axonerve does not support 


synchronous read from the entries and writing to the entries. Our Axonerve controller 


act as an arbiter between the configuration and the packet classification. When the 


control processor attempts to configure an entry in the Axonerve, the packet 


classification in the Axonerve-based unit is suspended. The alternative approach is to 


store the configuration information if the Axonerve IP is needed for lookup operation. 


Since the alternative approach increase the complexity of the controller, the first 


approach is implemented for the evaluation purpose.   


The Axonerve-based unit stores 1024 entries with the restrictions in field masking. It 


supports 2048 types of entries, while the TCAM-based unit supports 4096 types of 


matches. Since the open field is always specified for the Axonerve-based unit, the 


rule types without destination MAC address cannot be mapped. In order to cover all 


rule types, the TCAM-based unit can be used in parallel with the Axonerve-based 


unit. 
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Figure 40: Example scenario for Axonerve-based unit 


 


Figure 40 shows an example scenario for the Axonerve-based unit. The hash results 


of 12-tuple forms 83-bit key that is applied to the Axonerve. The matching entry’s 


address is used as a pointer to lookup in the rule table. Finally, the specified fields in 


the rule table entry is compared against the original field values.  


The collisions in the address space of Axonerve key is also possible due to the 


nature of hashing. I did the experimental hash collision analysis with the synthetic 


rule sets for the Axonerve-based unit. The rules specifying destination MAC address 


are mapped to the Axonerve model which has 1024 entries with 83-bit key. The 


expected number of collision is 0.01 when configuring 1024 Axonerve entries. 


Therefore, the probability of collision is very low due to our hashing functions. Apart 


from that, Axonerve entries can collide due to the internal functionality of IP. If the 


values assigned to the open field are randomly distributed, the probability of internal 


collision is very low according to the specification of the Axonerve IP.    


 


5.5.3 Evaluation Results 
 


As shown in Figure 39, the Axonerve-based unit is integrated with the hash-based 


unit and the linear search unit. The evaluation results are obtained for the following 


table sizes: 


• 8 linear search entries 


• 512 hash-based entries 


• 1024 Axonerve-based entries   
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Table 12: Latency, throughput, and power dissipation of FlowCache with Axonerve 


Latency (ns) Throughput (Gbps) Power Dissipation (W) 


165 12.8 0.48* 


 


The trial version of Axonerve works with our 200 MHz data path clock. Therefore, 


clock domain crossing is not required between the data path clock and the Axonerve 


clock. Although the TCAM has a single clock cycle latency for search operation, the 


Axonerve has 12 clock cycles latency. The Axonerve-based unit with the controller 


has 15 clock cycles latency. The other search units align their results according to the 


Axonerve-based unit. The latency of FlowCache increase from 145 ns to 165 ns with 


Axonerve. Similarly, the power dissipation increases by fifty percent compared to the 


FlowCache with TCAM according the implementation results in Vivado 2015.4. The 


throughput is 12.8 gigabits per second since the FlowCache with Axonerve is still 


able to accept new input in each clock cycle. The comparison between the 


FlowCache with TCAM and the FlowCache with Axonerve should be taken with a 


grain of salt because the table sizes are different for these options. Table 12 show 


the latency, throughout and power dissipation results of FlowCache with Axonerve.  


 


Table 13: Resource utilization of FlowCache with Axonerve 


Resource Type Used Available Utilization (%) 


LUTs 10810 134600 8.03 


Registers 7040 269200 2.63 


BRAM tiles 48 365 12.32 


 


Table 13 shows the resource utilization of FlowCache with Axonerve. Target device 


is Artix-7 (xca200tfbg676i). These results justify that bigger tables can be easily used 


in this size of FPGA. The BRAM usage is doubled compared to the FlowCache with 


TCAM since Axonerve stores a whole entry table in BRAMs.  


The hash-based unit is scalable with the number of entries, whereas the TCAM-


based unit is limited with timing constraints. This limits the scalability of the 


FlowCache. By replacing our TCAM design with the Axonerve IP, the generic 


matcher in the FlowCache becomes scalable with number of entries.  


 


 


 


 


                                              


 


 


* The power dissipation value taken from the power dissipation report of Vivado 2015.4. It should be 
taken with a grain of salt because they don’t show realistic power dissipation values. 
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6. Conclusion and Future Work  
 


OpenFlow requires a packet classification method that can match packets with an 


arbitrary number of fields. Traditional packet classification methods don’t provide 


required scalability with the number of fields, incremental update and deterministic 


search time latency. I propose a hardware accelerated packet classification method 


with software switch for OpenFlow 1.0 specification. Decomposition based approach 


is combined with a hash table and TCAM for flow caching on FPGA. The rule type-


specialized match circuit (EMH) provides a memory efficient and scalable flow 


caching with predefined types, whereas the generic matcher (EMA) supports all the 


combinations of fields as a match type. However, EMA does not scale well with the 


number of entries and it is limited with TCAM implementation on FPGA. The 


FlowCache combines these two methods to cache flow table entries for OpenFlow 


packet classification. The goal is to improve the average performance by offloading 


the software switch, which is Open vSwitch.  


In the beginning of my master thesis, the initial design of EMH is provided by the 


company. I analyzed the rule sets that are used in a data center. Based on this 


analysis, I have observation that only small number of rule types are used in practice 


although there are many potential rule types in theory. By exploiting this observation, 


I adapt the hash-based unit in a way that the four most used rule types are mapped 


to the hash-based unit. According to the rule set analysis in Section 3.5, 88 percent 


of rules in the analyzed network can be mapped to the hash-based unit. However, 


the rule dependency problem should be solved if there are overlapping and 


prioritized rules in the rest of rules. In order to solve this problem, I designed EMA 


that is capable of storing all rule types. The rules that are not supported by EMH are 


mapped to EMA. Since the overlapping and more prioritized rules are mappable with 


EMA, it increases the mapping power of all design significantly.  


According to the resource utilization in Section 3.7.1, EMH can store up to 8K 


OpenFlow 1.0 entries in our FPGA. Similarly, EMA can store up to 1K entries in our 


FPGA by pipelining and parallel usage of TCAMs. Parallel TCAMs provides better 


scalability at the expense of latency. The results of parallel TCAMs should be 


registered before combining them to achieve required timing. The estimated values 


are calculated based on the BRAM usage of EMH and the memory LUT usage of 


EMA. The rule set analysis shows that 88 percent of rules are mappable to EMH. The 


ratio of EMH table size to EMA table size can be selected as eight based on the rule 


set analysis.  As a result of the resource utilization and the rule set analysis, I 


propose to store 8K rules in EMH and 1K entries in EMA.  


As a future work, the alternative solutions to hash collision problem should be 


investigated. One alternative to deterministic hashing is to use open address 


mechanism, such as Cuckoo Hashing. Moreover, the generic matcher does not scale 


well due to the TCAM implementation on FPGA. Different approaches should be 


investigated to replace the current TCAM implementation. The evaluation results of 


Axonerve shows that TCAM can be replaced with Axonerve to store a high number of 


entries in the generic matcher.  
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The current implementation of parser is quite rigid. It allows processing on a fixed set 


of fields. However, the trend in network processing is flexible and programmable data 


planes for SDN switches. In order to support different protocols and match fields, 


different configurable parser implementations should be investigated. TCAM can be 


used to configure supported protocols and extracted fields in a configurable parser.  


Apart from the future work in the hardware accelerator, the further research should 


focus on the software part. The idea is to accelerate active flows, flows requiring low 


latency and flows with a high data rate. The mapping software should extract the 


entries from Open Vswitch and map the desirable flows to the FlowCache. The 


current mapping is based on the userspace module of OvS. The next step is to 


extract the flow table entries from the kernel module to map the desirable flows.  
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Appendix A: Search Units Implementation Details 
 


 


Figure 41: Hash-based unit implementation details 


As shown in Figure 41, there are four different hash results for each type in the hash-


based unit. The hash-based controller has access to the hash table and the field 


table. Based on the matching entry in the field table, FlowID is given as output. 


 


 


Figure 42: Linear search unit implementation details 


 







Page | 66 


As shown in Figure 42, the linear based unit is simplified version of the hash-based 


unit without hash generation.  


 


 


Figure 43: TCAM-based unit implementation details 


 


Figure 43 shows the TCAM-based unit implementation. Unlike the hash generation in 


the hash-based unit, the hash generation perform hashing on each field separately 


and the concatenated result is passed to the controller. The hash table is replaced by 


the TCAM module that manages clock domain crossings. 
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Appendix B: Rule Structure of FlowCache 
 


Table 14 shows the EMH rule structure. The rules are stored in the fields table and 


configured by the control processor. A field table entry has a match field, FlowID, 


priority field, type ID field and valid bit.  


 


Table 14: EMH rule structure 


287 … 32 31....16 15....8 7....6 5...1 0 


Fields used for 
comparison: 
 
Depends on 
TYPE_ID. 


FlowID 
 
This value will 
be used as 
Flow ID 


Priority 
 
Defines the 
priority of this 
rule. (If there 
are more 
matching 
rules). 


Not used TYPE_ID 
 
Defines the 
type of this 
rule. (Binary 
encoded)  
0001=>Type1  
0010=>Type2 
0100=>Type3 
1000=>Type4 
 


VALID_BIT 
 
0: do not use 
this rule 
 
1: this rule is 
valid 


 


Table 15 shows the EMA rule structure. Type ID field is 12-bit number where each bit 


corresponds a header field. If the bit is set to ‘1’, the corresponding field is compared 


against the original field by this rule. Otherwise, the field is ignored by the rule. 


 


Table 15: EMA rule structure 


287 … 46 45....30 29....22 21....10 9...1 0 


Fields used for 
comparison: 
 
Depends on 
TYPE_ID. 


FlowID 
 
This value will 
be used as 
Flow ID 


Priority 
 
Defines the 
priority of this 
rule. (If there 
are more 
matching 
rules). 


TYPE_ID 
 
Defines the 
type of this 
rule. 


Reserved 
 
It will be used 
for IPv6 
support  
 
 


VALID_BIT 
 
0: do not use 
this rule 
 
1: this rule is 
valid 
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