Network-Coded Cooperation: A Mathematical Perspective

M.Sc. Israel Leyva-Mayorga

PhD researcher at the Department of Communications, Universitat Politècnica de València, Valencia, Spain

Guest researcher at the Deutsche Telekom Chair of Communication Networks, Technische Universität Dresden, Dresden, Germany

Main collaborators at the Deutsche Telekom Chair of Communication Networks

- M.Sc. Roberto Torre Arranz
- M.Sc. Sreekrishna Pandi

Outline	1			

- 1 Introduction
- 2 Motivation
- 3 Proposed protocol
- 4 Basic RLNC modeling
- 5 Challenges
- 6 Results
- 7 Future work

Network Coding (NC)

Random Linear Network Coding (RLNC) in wireless networks

- Novel paradigm in communications
- Reduces the number of transmissions
- Enhances throughput
- Overhead: decoding complexity
- Numerous "flavors":
 - Full-vector
 - Systematic
 - PACE
 - Sparse

Packets in the generation

$$\mathbf{G} = [\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4]$$

Matrix of coefficients

$$\mathbf{M}_{\mathsf{FV}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & \cdots & 1 \\ 0 & 1 & 1 & 0 & 1 & \cdots & 0 \\ 1 & 0 & 1 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

Packets in the generation

$$\mathbf{G} = [\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4]$$

Matrix of coefficients

Introduction Motivation Protocol Modeling Challenges Results Future work References Cooperative Mobile Clouds (CMCs)

Cooperation ¹

- The state of having shared interests or efforts (as in social or business matters)
- 2 The work and activity of a number of persons who individually contribute toward the efficiency of the whole

Mobile Clouds (MCs)

Cooperative arrangement of dynamically connected nodes sharing resources opportunistically 2

¹Merriam Webster [Online]. Available: https://www.merriam-webster.com ²F. H.P. Fitzek and M. D. Katz (2014). *Mobile Clouds. Exploiting Distributed Resources in Wireless, Mobile and Social Networks.* United Kingdom: John Wiley and Sons, Ltd. ISBN: 978-0-470-97389-9. Introduction

Challenges

Downlink data transmission in 4G LTE-A

Physical Downlink Shared Channel (PDSCH)³

Minimum unit for data transmission: physical resource block (PRB)

³3GPP (2015). Physical channels and modulation. TS 36.211 V12.6.0.

LTE-A has no efficient mechanisms for massive content distribution $^{\rm 4}$

Broadcast systems such as the eMBMS present several drawbacks

- Indoor coverage
- High energy consumption
- Low spectral efficiency

State of the art: One unicast session per user equipment (UE)

Existing cooperative systems implement unicast short-range links

Multicast in the short-range is much more efficient

⁴EBU (2014). *Delivery of Broadcast Content over LTE Networks*. Tech. rep.

LTE-A has no efficient mechanisms for massive content distribution $^{\rm 4}$

Broadcast systems such as the eMBMS present several drawbacks

- Indoor coverage
- High energy consumption
- Low spectral efficiency

State of the art: One unicast session per user equipment (UE)

Existing cooperative systems implement unicast short-range links

Multicast in the short-range is much more efficient

⁴EBU (2014). *Delivery of Broadcast Content over LTE Networks*. Tech. rep.

Solution: Network Coded Cooperation (NCC)

Combination of RLNC with CMCs

- Offload the LTE-A link
- Increase throughput
- Reduce energy consumption

But we need answers

- How to organize the UEs?
- How to transmit data?

Cellular phase

- eNB transmits g data packets in n time-multiplexed unicast sessions
- Data packets are distributed among the n UEs so they MUST cooperate

CMC phase

- UEs cooperate through multicast WiFi links.
- No ACKs are transmitted
- An RLNC scheme is implemented

Basic NCC protocol

Protocol as in CCNC 2018 demo ⁵

Scheduling

- Concurrent reception from LTE-A and WiFi links
- Improved throughput
- Practical in current smartphones?

⁵S. Pandi, R. Torre, G. Nguyen, and F. H. P. Fitzek, "Massive Video Multicasting in Cellular Networks using Network Coded Cooperative Communication", demo presented at the IEEE CCNC/CES, 2018.

Protocol variant 1 (Pv1)

Scheduling

- Alternated LTE-A and WiFi transmissions
- Practical in current smartphones?
- Not flexible to different data rates
- Improved throughput?
- Improved packet latency?

Protocol variant 2 (Pv2)

Scheduling

- First LTE-A transmissions and then WiFi
- Practical in current smartphones
- Flexible to different data rates
- Improved throughput?
- Improved packet latency?

Mathematical tools

Probability and stochastic processes

- Random variables
- Probability mass function (pmf)
- Cumulative distribution function (CDF)
- Binomial distribution (binomial coefficient)

Markov chains

- Discrete-time
- Absorbing
- Transient analysis
- Phase-type distributions

Why discrete-time Markov chains (DTMCs)?

Reduced computational complexity

Those binomial coefficients are nasty, even $Matlab^{\mathbb{R}}$ complains

Example: negative binomial distribution

$$p_X(x) = \Pr[X = x] = {\binom{n_t - 1}{n_s - 1}} p_s^{n_s} (1 - p_s)^{n_t - n_s}$$

- $n_t \equiv$ number of trials
- $n_s \equiv$ number of successes
- $p_s \equiv$ probability of success

Example: DTMC for a negative binomial distribution

Graphical representation

We need

•
$$oldsymbol{lpha}^{(0)} = \left[lpha_0^{(0)}, lpha_1^{(0)}, \dots, lpha_{g-1}^{(0)}
ight] \equiv$$
 vector of initial states

- $\mathbf{T} \equiv$ transition matrix
- $p_{a,b} \equiv$ transition probabilities

■
$$p_{a,a+1} = p_s$$

■ $p_{a,a} = 1 - p_s$

Introduction

Example: DTMC for a negative binomial distribution

Transition matrix of size $g\times g$

$$\mathbf{T} = \begin{bmatrix} 1 - p_s & p_s & 0 & \cdots & 0 \\ 0 & 1 - p_s & p_s & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & p_s \\ 0 & 0 & 0 & \cdots & 1 - p_s \end{bmatrix}$$

How to obtain the pmf

$$\boldsymbol{\alpha}^{(n_t)} = \boldsymbol{\alpha}^{(n_t-1)} \mathbf{T}$$
$$p_X(x) = \left[\boldsymbol{\alpha}^{(n_t)}, 1 - \sum_{n_s=0}^{g-1} \alpha_i^{(n_t)}\right]$$

		Modeling		
Parame	eters			

Parameter	Symbol
Generation size	g packets
Cloud size	$n \; UEs$
Field size	GF(q)
Time slots allocated for coded packet transmissions	s
Packet erasure rate (PER)	ϵ
Desired probability that the coding matrix of the $n\ {\rm UEs}$	au
is full rank (i.e., reliability)	

Introduction	Motivation	Protocol	Modeling	Challenges	Results	Future work	References
Notatic	n						
Nota	tion		Definitior	1			
$\overline{N} =$	$i \in \mathbb{Z}_+ \mid$	$i \le n\}$	Set of U	Es in the C	СМС		
$N_i =$	$\{j \mid j \in I$	$\mathrm{V}\setminus i\}$	Set of ne	ighbors of	the <i>i</i> th	UE	
g_i pa	ckets		Packets t <i>i</i> th UE	transmitte	d from t	he eNB to	the
t_i			Number the <i>i</i> th U	of coded E	transmi	ssions tow	ards
$X_{t_i}^{(i)}$			Rank of t time inde	the coding ex t_i ; doma	matrix a ain: <i>x</i>	t the <i>i</i> th U	E at
$Z_{t_i}^{(i,j)}$)		Number of l	of dofs mis both, the <i>i</i>	ssing at f th and j	the coding th UEs at t	ma- time
			t_i ; domai	n: <i>z</i>	1		
$\mathbb{P}(t_i)$			Probabili	ty that th	e t_i th c	oded packe	et is

Probability that the t_i th coded packet is innovative

Definition (Decoding probability under RLNC)

Let C be a coding matrix of size $r \times c$ s.t. $r \in \mathbb{Z}_{\geq 0}$, and $\{c \in \mathbb{Z}_+ \mid c \leq g\}$, whose elements are selected uniformly at random from $\mathsf{GF}(q)$. The probability that matrix C is full-rank is given as

$$F_{\mathsf{rInc}}(r,c) = \begin{cases} 0 & \text{for } r < c, \\ \prod_{j=0}^{c-1} \left(1 - q^{j-r}\right) & \text{otherwise.} \end{cases}$$
(1)

No ACKs are transmitted and generations are transmitted one after the other

- How many transmissions are needed to decode with a certain reliability?
- Which packets should the UEs recode?
- What is the best RLNC scheme for our protocol?
- Field size 2 or 2^8 ?
- How to organize the cellular and CMC phases?

Challenges: Protocol design

No ACKs are transmitted and generations are transmitted one after the other

- How many transmissions are needed to decode with a certain reliability?
- Which packets should the UEs recode? all
- What is the best RLNC scheme for our protocol? Systematic over full-vector
- Field size 2 or 2⁸? energy consumption: communication vs decoding
- How to organize the cellular and CMC phases? Protocol variant 2: packet latency vs flexibility

What is the best RLNC scheme for our protocol?

Systematic over full-vector RLNC

- Simple
- Less packets to decode the generation
- Improved packet latency
- Lower computational complexity

What about other RLNC schemes?

- Sparse: Difficult to model analytically⁶
- Telescopic: Good idea
- Other suggestions?

⁶P. Garrido, D. E. Lucani, and R. Agüero (2017). "Markov Chain Model for the Decoding Probability of Sparse Network Coding". In: *IEEE Trans. Commun.* 65.4, pp. 1675–1685. DOI: 10.1109/TCOMM.2017.2657621.

How better is systematic RLNC?

Less packets to decode the generation

Example for $n=1\text{, }q=2\text{, }g=100\text{, and }\epsilon=0.02$

Challenges

How better is systematic RLNC?

Improved packet latency

1 CDF of the packet latency **Systematic** 0.80.6Full-vector 0.40.20 501001500 Packet latency

Example for n = 1, q = 2, g = 100, and $\epsilon = 0.02$

How better is systematic RLNC?

Lower computational complexity

Example for n = 1, q = 2, g = 100, and $\epsilon = 0.02$ 1 CDF of the number of coded Full-vector 0.8packets received Systematic 0.60.40.20 0 204060 80 100Number of received packets

Challenges: Modeling of multicast NCC

Objective

Optimize the performance of the system

Main problem: Correlation of data

- 1 Multicast problem
- 2 Multiple sources with different data
 - follow a TDMA schedule
 - include the received packets in the coding matrix

Exact formulations only exist for the case of one source and two destinations 7

Lower and upper bounds are used for n > 2

This is the most common assumption

$$\Pr\left[\bigcap_{i=1}^{n} X_{t_i}^{(i)} = g\right] = \prod_{i=1}^{n} \Pr\left[X_{t_i}^{(i)} = g\right]$$
(2)

⁷E. Tsimbalo, A. Tassi, and R. J. Piechocki (2018). "Reliability of Multicast under Random Linear Network Coding". In: *IEEE Trans. Commun.* to be published.

Exact formulations only exist for the case of one source and two destinations 7

Lower and upper bounds are used for n > 2

This is the most common assumption, but is not true

$$\Pr\left[\bigcap_{i=1}^{n} X_{t_i}^{(i)} = g\right] \neq \prod_{i=1}^{n} \Pr\left[X_{t_i}^{(i)} = g\right]$$
(2)

⁷E. Tsimbalo, A. Tassi, and R. J. Piechocki (2018). "Reliability of Multicast under Random Linear Network Coding". In: *IEEE Trans. Commun.* to be published.

Exact formulations only exist for the case of one source and two destinations 7

Lower and upper bounds are used for n > 2

This is the most common assumption, but is not true

$$\Pr\left[\bigcap_{i=1}^{n} X_{t_i}^{(i)} = g\right] \ge \prod_{i=1}^{n} \Pr\left[X_{t_i}^{(i)} = g\right]$$
(2)

⁷E. Tsimbalo, A. Tassi, and R. J. Piechocki (2018). "Reliability of Multicast under Random Linear Network Coding". In: *IEEE Trans. Commun.* to be published.

Example: What is the probability that every UE decodes if g = 5 and q = 2? (Tsimbalo, Tassi, and Piechocki 2018)

Full-vector RLNC

- Real:
- Simple bound:
- Improved bound:

Example: What is the probability that every UE decodes if g = 5 and q = 2? (Tsimbalo, Tassi, and Piechocki 2018)

Full-vector RLNC

- Real: 0.33
- Simple bound: 0.20
- Improved bound: 0.27

Example: What is the probability that every UE decodes if g = 5 and q = 2?

Challenges

Systematic RLNC

- Real:
- Conditional probability:

Example: What is the probability that every UE decodes if g = 5 and q = 2?

Challenges

Systematic RLNC

Real: 0.42

Conditional probability: 0.42

Solutions to multicast problem

Systematic RLNC

It is safe to simply use

$$\Pr\left[\bigcap_{i=1}^{n} X_{t_i}^{(i)} = g\right] \ge \prod_{i=1}^{n} \Pr\left[X_{t_i}^{(i)} = g\right],\tag{3}$$

but be aware that it is a lower bound

Multiple sources with different data

The eNB transmits g_i packets to the *i*th UE

- These are not present at the remaining UEs before the CMC phase
- Is not a problem during non-coded transmissions (Systematic RLNC)

Introduction

Multiple sources with different data and Systematic RLNC

I want to obtain the exact probability that a packet transmitted from j to i is innovative

Multiple sources with different data

What is the exact probability that a packet transmitted from $j \mbox{ to } i$ is innovative

$$\mathbb{P}(t_i \mid x, z) = P\left[X_{t_i+1}^{(i)} = x + 1 \mid X_{t_i}^{(i)} = x \cap Z_{t_i}^{(i,j)} = z\right]$$
(4)

$$\mathbf{C}_1 = [\mathsf{c}, \mathsf{h}, \mathsf{a}, \mathsf{i}]$$

 $\mathbf{C}_2 = [\mathsf{c}, \mathsf{h}, \mathsf{a}, \mathsf{r}]$
 $\mathbf{C}_3 = [\mathsf{h}, \mathsf{a}, \mathsf{i}]$

Multiple sources with different data

What is the exact probability that a packet transmitted from $j \mbox{ to } i$ is innovative

$$\mathbb{P}(t_{i} \mid x, z) = P\left[X_{t_{i}+1}^{(i)} = x + 1 \mid X_{t_{i}}^{(i)} = x \cap Z_{t_{i}}^{(i,j)} = z\right]$$
(4)
= 1 - q^{x+z-g}.
$$\mathbf{C}_{1} = [\mathsf{c}, \mathsf{h}, \mathsf{a}, \mathsf{i}]$$
$$\mathbf{C}_{2} = [\mathsf{c}, \mathsf{h}, \mathsf{a}, \mathsf{r}]$$
$$\mathbf{C}_{3} = [\mathsf{h}, \mathsf{a}, \mathsf{i}]$$

Multiple sources with different data

What is the exact probability that a packet transmitted from $j \mbox{ to } i$ is innovative

$$\mathbb{P}(t_{i} \mid x, z) = P\left[X_{t_{i}+1}^{(i)} = x + 1 \mid X_{t_{i}}^{(i)} = x \cap Z_{t_{i}}^{(i,j)} = z\right]$$
(4)
= 1 - q^{x+z-g}.
$$\mathbf{C}_{1} = [\mathsf{c}, \mathsf{h}, \mathsf{a}, \mathsf{i}]$$
$$\mathbf{C}_{2} = [\mathsf{c}, \mathsf{h}, \mathsf{a}, \mathsf{r}]$$
$$\mathbf{C}_{3} = [\mathsf{h}, \mathsf{a}, \mathsf{i}]$$

How do I obtain x and z?

Easy, you need the joint pmf of $X_{t_i}^{(i)}$ and $Z_{t_i}^{(i,j)}$

Multiple sources with different data

What is the exact probability that a packet transmitted from $j \mbox{ to } i$ is innovative

$$\mathbb{P}(t_{i} \mid x, z) = P\left[X_{t_{i}+1}^{(i)} = x + 1 \mid X_{t_{i}}^{(i)} = x \cap Z_{t_{i}}^{(i,j)} = z\right]$$
(4)
= 1 - q^{x+z-g}.
$$\mathbf{C}_{1} = [\mathsf{c}, \mathsf{h}, \mathsf{a}, \mathsf{i}]$$
$$\mathbf{C}_{2} = [\mathsf{c}, \mathsf{h}, \mathsf{a}, \mathsf{r}]$$
$$\mathbf{C}_{3} = [\mathsf{h}, \mathsf{a}, \mathsf{i}]$$

How do I obtain x and z?

Easy, you need the joint pmf of $X_{t_i}^{(i)}$ and $Z_{t_i}^{(i,j)}$

Multiple sources with different data

Example of $X_0^{(i)}$ and $Z_0^{(i,j)}$ in Pv2 under Systematic RLNC

$$p_{X_0 Z_0}(x, z \mid i, j) = \epsilon^{g-x+z} \sum_{u} \left[\binom{g_j}{u} \binom{\gamma}{x-g_i-u} \times \binom{\gamma-x+g_i+u}{z} (1-\epsilon)^{\gamma+u-z} \right]$$
(5)

where

 $\begin{array}{l} \gamma = g - g_i - g_j \\ \\ \blacksquare \ \{ u \in \mathbb{Z}_{\geq 0} | \max\{0, x - \gamma - g_i + z\} \leq u \leq \min\{g_j, x - g_i\} \} \text{ is the number of dofs in } i \text{ transmitted by } j \end{array}$

Protocol variants (Pv and Pv2)

Exact same modeling under the following assumptions

- PER at the LTE-A link $\epsilon_{\ell} = 0$ (eNB can recover the errors)
- Same PER between UE pairs, $\epsilon_{\{i,j\}} = \epsilon$ for all i and j
- Difference: Pv1 only possible if the WiFi data rate is higher than the LTE-A data rate

Rank of the coding matrix of the ith UE

At the end of the cellular phase

$$g_i = \left\lceil \frac{g - (i - 1)}{n} \right\rceil \tag{6}$$

At the end of the systematic transmissions

$$p_{X_0}(x;i) = \Pr\left[X_0^{(i)} = x\right] = \binom{g - g_i}{x - g_i}(1 - \epsilon)^{x - g_i} \epsilon^{g - x}$$
(7)

Multiple sources with different data problem

For $t_i > 0 \mbox{ coded packets are transmitted, so we go back to our problem$

$$p_{X_0 Z_0}(x, z \mid i, j) = \epsilon^{g - x + z} \sum_{u} \left[\binom{g_j}{u} \binom{\gamma}{x - g_i - u} \times \binom{\gamma - x + g_i + u}{z} (1 - \epsilon)^{\gamma + u - z} \right]$$
(8)

Solution: Simplify the problem

What if we just assume
$$\Pr\left[Z_{t_i}^{(i,j)}=0
ight]=1$$
 for all t_i ?

We can define

$$\mathbb{P}'(t_i) = \mathbb{P}\left(t_i \mid x, 0\right) = 1 - q^{x-g} \tag{9}$$

- We can use the pmf of $X_{t_i}^{(i)}$ alone instead of the joint pmf of $X_{t_i}^{(i)}$ and $Z_{t_i}^{(i,j)}$

Accuracy of our simplification

Mean squared error (MSE) between the approximate and exact probability that the first coded transmission is innovative.

	<i>n</i> =	= 3	<i>n</i> =	n = 100		
	g = 10	g = 100	g = 10	g = 100		
$\epsilon = 0.02$						
q = 2	$2.85\cdot 10^{-4}$	$1.71\cdot 10^{-3}$	$9.13 \cdot 10^{-4}$	$3.64\cdot 10^{-3}$		
$q = 2^8$	$4.22\cdot 10^{-6}$	$1.39\cdot 10^{-5}$	$1.30 \cdot 10^{-5}$	$2.12\cdot 10^{-5}$		
$\epsilon = 0.16$						
q = 2	$1.25 \cdot 10^{-2}$	$8.38\cdot10^{-4}$	$2.92 \cdot 10^{-2}$	$1.29\cdot 10^{-4}$		
$q = 2^8$	$1.25\cdot 10^{-4}$	$4.12 \cdot 10^{-8}$	$2.82 \cdot 10^{-4}$	$3.96 \cdot 10^{-10}$		

Probability of decoding given at the *i*th UE given t_i

Same as in a unicast session for each \boldsymbol{i}

$$F_T(t_i; i) = F_{X_{t_i}}(g; i) = \Pr\left[X_{t_i}^{(i)} = g\right]$$
(10)

Results

$$F_{T|X_0}(t_i \mid x; i) = \sum_{u=g-x}^{t_i} {\binom{t_i}{u}} (1-\epsilon)^u \, \epsilon^{t_i-u} \, F_{\mathsf{rlnc}}(u; g-x) \quad (11)$$

$$F_T(t_i; i) = \sum_{x=g_i}^g p_{X_0}(x; i) \ F_{T|X_0}(t_i \mid x; i)$$
(12)

How many transmissions are needed to decode with a certain reliability?

 t_i depends on the number of total coded transmissions, s

$$t_i = f(s,i) = s + g_i - \left[\frac{g+s-(i-1)}{n}\right]$$
 (13)

Then we go back to the multicast problem

$$F_S(s;n) \equiv \Pr\left[\bigcap_{i=1}^n X_{f(s,i)}^{(i)} = g\right],$$
(14)

which we simplify

$$F'_{S}(s;n) = \prod_{i=1}^{n} \Pr\left[X^{(i)}_{f(s,i)} = g\right] = \prod_{i=1}^{n} F_{T}(f(s,i);i)$$
(15)

How many transmissions are needed to decode with a certain reliability?

 t_i depends on the number of total coded transmissions, s

$$t_i = f(s,i) = s + g_i - \left[\frac{g+s-(i-1)}{n}\right]$$
 (13)

Then we go back to the multicast problem

$$F_S(s;n) \equiv \Pr\left[\bigcap_{i=1}^n X_{f(s,i)}^{(i)} = g\right],$$
(14)

which we simplify again?

$$F'_{S}(s;n) = \prod_{i=1}^{n} \Pr\left[X^{(i)}_{f(s,i)} = g\right] = \prod_{i=1}^{n} F_{T}(f(s,i);i)$$
(15)

How many transmissions are needed to decode with a certain reliability?

 t_i depends on the number of total coded transmissions, s

$$t_i = f(s,i) = s + g_i - \left[\frac{g+s-(i-1)}{n}\right]$$
 (13)

Then we go back to the multicast problem

$$F_S(s;n) \equiv \Pr\left[\bigcap_{i=1}^n X_{f(s,i)}^{(i)} = g\right],$$
(14)

which we simplify again? yes, again!

$$F'_{S}(s;n) = \prod_{i=1}^{n} \Pr\left[X^{(i)}_{f(s,i)} = g\right] = \prod_{i=1}^{n} F_{T}(f(s,i);i)$$
(15)

Optimal number of time slots allocated for coded transmissions to achieve the desired reliability, $\boldsymbol{\tau}$

$$s^* \equiv \min_{s} \left\{ s \mid F'_S(s;n) \ge \tau \right\}$$
(16)

Throughput given the LTE-A data rate, R

$$R_{\rm ue}(n) = \frac{\ell}{d_s} \frac{g}{2g + s^*} = R \frac{g}{2g + s^*}$$
(17)

Now we obtain:

Average energy consumption given the power consumption, $P_{\rm cel,rx}{}^8,~P_{\rm wifi,rx},~{\rm and}~P_{\rm wifi,tx}{}^9$

$$\overline{E}_{cmc}(n) = \frac{1}{d_s} \left[g P_{cel,rx} + (g + s^*) P_{wifi,tx} + \left(n g + \sum_{i=1}^n \mathbb{E} \left[T^{(i)} \mid s^* \right] - g_i \right) P_{wifi,rx} \right]; \quad (18)$$

⁸Mads Lauridsen et al. (2014). "An empirical LTE smartphone power model with a view to energy efficiency evolution". In: *Intel[®] Technol. J.* 18.1, pp. 172–193.

⁹L. Sun et al. (2017). "Experimental Evaluation of WiFi Active Power/Energy Consumption Models for Smartphones". In: *IEEE Trans. Mobile Comput.* 16.1, pp. 115–129. ISSN: 1536-1233. DOI: 10.1109/TMC.2016.2538228.

			Results	
_				

Parameter settings

Parameter	Symbol	Settings
Generation size	g	100 packets
Field size	q	$\{2, 2^8\}$
Cloud size	n	$\{2, 3, \dots, 100\}$
Packet erasure rate (PER)	ϵ	$\{0.2, 0.4, 0.8, 0.16\}$
Subframe duration	d_s	1 ms
Packet length	ℓ	$1470 \ \mathrm{bytes}$
Data rate at the LTE-A and WiFi	R	11.76 Mbps
links		
Power cons. for LTE-A reception	$P_{cel,rx}$	924.57 mW
Power cons. for WiFi transmission	$P_{\sf wifi,tx}$	235.20 mW
Power cons. for WiFi reception	$P_{\sf wifi, rx}$	235.20 mW

			Results	
Results				

How big is the MSE in the pmf of S of our model vs a "hausgemachter" simulator?

	n = 3			n = 100		
	g = 10	g = 100		g = 10	g = 100	
$\epsilon = 0.02$						
q = 2	$9.15\cdot 10^{-6}$	$2.02\cdot 10^{-6}$		$2.85\cdot 10^{-3}$	$2.59\cdot 10^{-4}$	
$q = 2^8$	$6.54\cdot10^{-5}$	$7.43 \cdot 10^{-6}$		$2.81\cdot 10^{-5}$	$4.21\cdot 10^{-6}$	
$\epsilon = 0.16$						
q = 2	$3.29\cdot 10^{-5}$	$8.44 \cdot 10^{-6}$		$5.56\cdot10^{-4}$	$1.30\cdot 10^{-4}$	
$q = 2^{8}$	$1.50 \cdot 10^{-4}$	$1.25 \cdot 10^{-5}$		$2.88 \cdot 10^{-5}$	$2.41 \cdot 10^{-5}$	

Our model vs "hausgemachter" simulator; worst case

Our model vs KODO: different conditions

			Results	
Results				

How does n affects performance?

			Results	
Results				

How does n affects performance?

			Results	
Results				

How does n affects throughput?

			Results	
Reculte				

Cloud size, n UEs

per

Improved model

- Recursive approximation for the joint pmf of $X_{t_i}^{(i)}$ and $Z_{t_i}^{(i,j)}$ for all t_i
- Adapt for a practical implementation with KODO
- Consider energy consumption during decoding

RLNC

Include other "flavors" or RLNC

Paper submissions

- Conference paper to GLOBECOM 2018
- Extension to a Q1 journal

Thanks for your attention

Any questions?

- Proposed protocol
- LTE-A
- Modeling
- Other topics:
 - Former and current areas of research (e.g., RA protocols, WSNs, NB-IoT)
 - New lines of research
 - Personal (e.g., grants)

Thanks for your attention

Any questions?

- Proposed protocol
- LTE-A
- Modeling
- Other topics:
 - Former and current areas of research (e.g., RA protocols, WSNs, NB-IoT)
 - New lines of research
 - Personal (e.g., grants)
- Further questions: isleyma@upv.es

- **3GPP (2015)**. *Physical channels and modulation*. TS 36.211 V12.6.0.
- **EBU** (2014). *Delivery of Broadcast Content over LTE Networks*. Tech. rep.
- Fitzek, F. H.P. and M. D. Katz (2014). Mobile Clouds. Exploiting Distributed Resources in Wireless, Mobile and Social Networks. United Kingdom: John Wiley and Sons, Ltd. ISBN: 978-0-470-97389-9.
- Garrido, P., D. E. Lucani, and R. Agüero (2017). "Markov Chain Model for the Decoding Probability of Sparse Network Coding". In: *IEEE Trans. Commun.* 65.4, pp. 1675–1685. DOI: 10.1109/TCOMM.2017.2657621.

Lauridsen, Mads et al. (2014). "An empirical LTE smartphone power model with a view to energy efficiency evolution". In: *Intel[®] Technol. J.* 18.1, pp. 172–193.
 Sun, L. et al. (2017). "Experimental Evaluation of WiFi Active Power/Energy Consumption Models for Smartphones". In: *IEEE Trans. Mobile Comput.* 16.1, pp. 115–129. ISSN: 1536-1233.

DOI: 10.1109/TMC.2016.2538228.

Tsimbalo, E., A. Tassi, and R. J. Piechocki (2018). "Reliability of Multicast under Random Linear Network Coding". In: *IEEE Trans. Commun.* to be published.