Finite Fields

In practice most finite field applications e.g. cryptography and error correcting codes utilizes a specific type of finite fields, namely the binary extension fields. The following exercises will introduce you to calculations in binary extension fields.

Exercise 1: The Binary Field

The binary field \mathbb{F}_{2} consists of two elements $\{0,1\}$ and is of particular interest since the binary operations are easily implemented and represented in software and hardware. In the case of the binary fields, arithmetic operations are performed modulo-2. For addition and multiplication this corresponds to the bitwise exclusive or (XOR) and the bitwise and (AND) operations.
(a) Fill in the missing values in the below table.

$A N D$	0	1
0		
1		

Table 1: The finite field \mathbb{F}_{2} consists of elements 0 and 1 which satisfy the addition(XOR) and multiplication(AND) tables.

Exercise 2: The Butterfly Network

(a) The butterfly network shown in the below figure is a famous example of Network Coding. Show how the two bits b_{1} and b_{2} may be delivered at the two receivers R_{1} and R_{2} simultaneously using the operations from the binary field (hint: the XOR operation is enough). Each edge may carry 1 bit per time unit.

Exercise 3: Binary Field Calculations

In practice calculations are typically performed w-bits at a time, where w corresponds to the word size of the hardware used. Typical values of w are $\{16,32,64\}$ bits. The below table shows an example of XOR and AND between two 8 -bit words.

01011001
XOR 00100110
$=01111111$
$=00000101$
11101001

	01111000
$A N D$	01100111
$=$	

Table 2: Addition and multiplication in \mathbb{F}_{2} with 8-bit words.
(a) Fill in the missing values in the tables.

Exercise 4: The Binary Extension Field
In a previous exercise we found a solution for the butterfly network using the binary field. However, when implementing Network Coding it can in certain cases be necessary to increase the field size in order to find a solution (i.e. the number of elements contained in the field). In the binary field \mathbb{F}_{2} the field size was 2 , i.e. there are two elements 0 , 1 . Binary extension fields have the form $\mathbb{F}_{2^{m}}$, where $m \geq 1$. A binary extension field contains 2^{m} elements, all field elements may be represented as binary polynomials of degree at most $m-1$:

$$
\begin{equation*}
\mathbb{F}_{2^{m}}=\left\{f_{m-1} x^{m-1}+\ldots+f_{2} x^{2}+f_{1} x+f_{0}: f_{i} \in\{0,1\}\right\} \tag{1}
\end{equation*}
$$

As an example consider the field given by $\mathbb{F}_{2^{3}}$ in the below table, in this case the field will consist of $2^{3}=8$ polynomial elements of degree $<m$.
In the binary extension field all polynomial elements can be represented as m bit binary numbers. It is important to notice the correspondence between the binary and polynomial representation. The bits from left to right are the coefficients of the powers of x in increasing order.

$G F 2^{3}$		
Polynomial	Binary	Decimal
0	000	0
1	001	1
x	010	2
$x+1$	011	3
x^{2}	100	4
$x^{2}+1$	101	5
$x^{2}+x$	110	6
$x^{2}+x+1$	111	7

(a) Fill in the missing values in the below table.

$G F 2^{m}$		
Polynomial	Binary	Decimal
$x^{7}+x^{6}+x^{4}+x+1$		
	11001001	
		133
$x^{4}+x^{2}+x$		
	00011001	
		10

(b) In the table what is the required value for m in order to represent the field elements.

Exercise 5: Polynomial Addition and Subtraction

Polynomials essentially allow the same arithmetic operations as integers, however when polynomials are used the operations are performed modulo $p(x)$, where $p(x)$ is an irreducible polynomial instead of a prime integer (e.g. 2 as in the case of the binary field). As with a prime number an irreducible polynomial is one which cannot be factored into products of two polynomials.
Ordinary polynomial addition is performed component-wise e.g. for two polynomials with a maximum degree of k :

$$
\begin{align*}
& f(x)=h(x)+g(x) \tag{2}\\
& f(x)=\sum_{i=0}^{k}\left(h_{i}+g_{i}\right) x^{i} \tag{3}
\end{align*}
$$

In $\mathbb{F}_{p^{m}}$ we calculate $f(x)+g(x)$ as $f(x)+g(x) \bmod p(x)$. This uses the usual component-wise addition as given in Equation (3), the only difference is that the coefficient sum is modulo p i.e. $h_{i}+g_{i} \bmod p$. As the degree of the resulting polynomial $f(x)$ cannot exceed the degree of the chosen prime polynomial, no further computations are needed.

Example

Lets consider a $w=8$ bit architecture with the two polynomials $a(x)=x^{7}+x^{6}+x^{2}$ and $b(x)=$ $x^{7}+x^{5}+x^{3}+x^{2}$ with the binary representation of 11000100 and 10101100 respectively. In the following we use \oplus to denote the XOR operation.

- Addition or subtraction: $11000100 \oplus 10101100=01101000$.

The result may be confirmed by adding the two polynomials directly:

$$
\begin{align*}
f(x) & =\left(x^{7}+x^{6}+x^{2}\right)+\left(x^{7}+x^{5}+x^{3}+x^{2}\right) \tag{4}\\
& =(1 \oplus 1) x^{7}+x^{6}+x^{5}+x^{3}+(1 \oplus 1) x^{2} \tag{5}\\
& =x^{6}+x^{5}+x^{3} \tag{6}
\end{align*}
$$

Where $x^{6}+x^{5}+x^{3}$ has the expected binary representation 01101000 .
(a) In $\mathbb{F}_{2^{8}}$ calculate $\left(x^{5}+x\right)+\left(x^{3}+x^{2}\right)$
(b) In $\mathbb{F}_{2^{8}}$ calculate $\left(x^{7}+x^{3}\right)+\left(x^{7}+x+1\right)$
(c) In $\mathbb{F}_{2^{8}}$ calculate $\left(x^{3}+x^{2}+x+1\right)+(x+1)$
(d) In $\mathbb{F}_{2^{8}}$ calculate $\left(x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+1\right)+\left(x^{4}+x^{2}+1\right)$

In the binary and binary extension field subtraction and addition are identical (based on the XOR).
Subtraction of two field elements can be defined in terms of addition, if $a, b \in \mathbb{F}$ then $a-b=$ $a+(-b)$, where $-b$ is the unique field element in \mathbb{F} such that $b+(-b)=0(-b$ is called the negative of b).
(e) In $\mathbb{F}_{2^{8}}$ calculate $\left(x^{5}+x\right)-\left(x^{3}+x^{2}\right)$
(f) In $\mathbb{F}_{2^{8}}$ calculate $\left(x^{7}+x^{3}\right)-\left(x^{7}+x+1\right)$
(g) In $\mathbb{F}_{2^{8}}$ calculate $\left(x^{3}+x^{2}+x+1\right)-(x+1)$
(h) In $\mathbb{F}_{2^{8}}$ calculate $\left(x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+1\right)-\left(x^{4}+x^{2}+1\right)$

Exercise 6: Polynomial Multiplication

For ordinary polynomial multiplication, the coefficients of $f(x)=h(x) g(x)$ are determined by convolution, the resulting polynomial $f(x)$ is of degree $=\operatorname{deg}(\mathrm{h})+\operatorname{deg}(\mathrm{g})$:

$$
\begin{equation*}
f_{i}=\sum_{j=0}^{i} h_{j} g_{i-j} \tag{7}
\end{equation*}
$$

The product $h(x) g(x)$ in $\mathbb{F}_{p^{m}}$ can be found by first multiplying $h(x)$ and $g(x)$ using ordinary polynomial multiplication. Then ensuring that the resulting polynomial $f(x)$ has degree $<m$ by reducing it modulo $p(x)$. The modulo operation can be implemented as polynomial long division and then taking the remainder. As for polynomial addition we must also ensure that all resulting coefficients are elements in \mathbb{F}_{p} by reducing them modulo p.
In the following use the irreducible prime polynomial $p(x)=x^{5}+x^{2}+1$

Example

$$
\begin{align*}
f(x) & =\left(x^{3}+x+1\right) \cdot\left(x^{2}+1\right) \tag{8}\\
& =x^{5}+(1 \oplus 1) x^{3}+x^{2}+x+1 \tag{9}\\
& =x^{5}+x^{2}+x+1 \tag{10}
\end{align*}
$$

Since degree of $f(x)$ equal m , we perform the modulo operation using the irreducible polynomial $p(x)$

$$
\begin{align*}
& f(x)=x^{5}+x^{2}+x+1 \quad \bmod p(x) \tag{11}\\
& f(x)=x \tag{12}
\end{align*}
$$

The result of the modulo operation can be calculated as the remaineder of polynomial long division with the irreducible polynomial:
(a) In $\mathbb{F}_{2^{5}}$ calculate $\left(x^{4}+x\right) \cdot\left(x^{3}+x^{2}\right)$
(b) In $\mathbb{F}_{2^{5}}$ calculate $\left(x^{3}\right) \cdot\left(x^{2}+x^{1}+1\right)$

Exercise 7: Polynomial Division

Division can be implemented in terms of multiplication with the inverse element.
Division can be defined in terms of multiplication: if $a, b \in \mathbb{F}$ then $a / b=a \cdot\left(b^{-1}\right)$, where b^{-1} is the unique field element in \mathbb{F} such that $b \cdot b^{-1}=1\left(b^{-1}\right.$ is called the inverse of $\left.b\right)$.

The inverse of a polynomial may be found using the Extended Euclidean algorithm.
(a) In $\mathbb{F}_{2^{5}}$ calculate $\left(x^{4}+x\right) /\left(x^{3}+x^{2}\right)$ given $\left(x^{3}+x^{2}\right)^{-1}=\left(x^{2}+x+1\right)$
(b) In $\mathbb{F}_{2^{5}}$ verify $\left(x^{3}+x^{2}\right)^{-1}=\left(x^{2}+x+1\right)$

