

5G Tactile Internet: Application, Challenges and First Solutions

Prof. Dr.-Ing. Dr. h.c. Gerhard Fettweis Prof. Dr.-Ing. Dr. h.c. Frank H.P. Fitzek

5G Lab Germany Members

SILICON SYSTEMS & WIRELESS NETWORK & CLOUD TACTILE INTERNET APPLICATIONS Frank Fitzek Ercan Altinsoy Gerhard Fettweis **Frank Ellinger Uwe Aßmann Diana Göringer** Wolfgang Nagel **Thomas Herlitzius Karlheinz Bock** Hermann Härtig **Dirk Plettemeier** Jens Krzywinski **Thorsten Strufe** Christel Baier **Klaus Janschek Christian Mayr Christof Fetzer** Leon Urbas Michael Schröter **Eduard Jorswieck** Jürgen Weber **Peter Birkholz** [Team of 600+ Researchers] Kambiz Jamshidi

Holistic 5G

Holistic 5G

Holistic 5G

5G LAB GERMANY

THE WAY TOWARDS 5G

Quelle: japantimes.co.jp/news/2014/09/30/asic-pacific/hong-kong-democracy-protesters-set-deadline-for-demands/

Quelle: japantimes.co.jp/news/2014/09/30/asic-pacific/hong-kong-democracy-protesters-set-deadline-for-demands/

.......

2022

Quelle: japantimes.co.jp/news/2014/09/30/asia-pacific/hong-kong-democracy-protesters-set-deadline-for-demands/

.....

Throughput

Billion Devices

2022

5000

Quelle: japantimes.co.jp/news/2014/09/30/asis-pacific/hong-kong-democracy-protesters-set-deadline-for-demands/

Throughput

Quelle: japantimes.co.jp/news/2014/09/30/asis-pacific/hong-kong-democracy-protesters-set-deadline-for-demands/

.......

500

Billion Devices

2022

You don't know where you're going until you know where you've been.

----4G 3G 2G 1G

Quelle: japantimes.co.jp/news/2014/09/30/asic-pacific/hong-kong-democracy-protesters-set-deadline-for-demands/

1G

5 Digital TDMA

Digital WCDMA

3G

Digital

4G

Quelle: japantimes.co.jp/news/2014/09/30/asic-pacific/hong-kong-democracy-protesters-set-deadline-for-demands/

......

interface ສ nore than the

4G

3G

2G

1G

Quelle: japantimes.co.jp/news/2014/09/30/asia-pacific/hong-kong-democracy-protesters-set-deadline-for-demands/

......

5G

CHANGE

4G

10 billion human beings communication

1G

3G 2G

5G

500 billion things control

Quelle: japantimes.co.jp/news/2014/09/30/asis-pacific/hong-kong-democracy-protesters-set-deadline-for-demands/

CHANGE ----cellular 5G 4G 3G cellular 2G meshed hvbrid 1G

Quelle: japantimes.co.jp/news/2014/09/30/asic-pacific/hong-kong-democracy-protesters-set-deadline-for-demands/

CHANGE -----RAN centric 5G 4G 3G holistic 2G approach 1G

Quelle: japantimes.co.jp/news/2014/09/30/asj -pacific/hong-kong-democracy-protesters-set-deadline-for-demands/

General 5G Definition

Wireless world

Wired world

So is 6G next?

......

Revolution Ahead

5G: Ubiquitous Steering & Control Communications

≤ 4G: Ubiquitous Content Communications

5G LAB GERMANY

5G DEFINITION

Free-Viewpoint Video

Tactile Internet Killer App: Free Viewpoint Video

10 cameras @ 100Hz frame rate → 100Gb/s < 10ms latency, 1-10ms synchronization!!!

http://baumgartnerfl.lima-city.de/stadion.html

Tactile Internet Killer App: Free Viewpoint Video

10 cameras @ 100Hz frame rate → 100Gb/s < 10ms latency, 1-10ms synchronization!!!

http://baumgartnerfl.lima-city.de/stadion.html

The 5G Atom

......

.....

5G LAB GERMANY

5G USE CASES
Industry 4.0

Design Service: A Job Machine

Tactile Internet Needed!

The Tactile Internet: Remote Controlled Humanoid Robots

The Tactile Internet: Remote Controlled Humanoid Robots

Agriculture

Precision Farming

Future of Farming

Productivity, Customer Value

Smart Grids / Micro Grids

1ms

18°

Reinventing "Latin Classes"

Robotic Assisted Surgery Today

Remote Medical Provisioning

Platooning

1-2 ms: ESC, ABS

Bald platooned ESC & ABS

Car Communication Networks

5G NETMOBIL AT A GLANCE

5G NETMOBIL – 5G SOLUTIONS FOR FUTURE CONNECTED MOBILITY

SPONSOR Federal Ministry of Education and Research

CALL 5G Tactile Internet within the german research program "IKT 2020 – Research for Innovation"

- PARTNERS Bosch (Coordinator), Technische Universität Dresden (Co-Coordinator), Acticom, BMW AG, CLAAS, Deutsche Telekom, dresden elektronik, Ericsson, Fraunhofer Heinrich-Hertz-Institut, Heusch Boesefeldt, Hochschule für Technik und Wirtschaft des Saarlandes, Logic Way, Nokia, Technische Universität Kaiserslautern, Vodafone, Volkswagen AG
- BUDGET 14.9 Mio. € (8,5 Mio. € Funding)

DURATION 01.03.2017 - 29.02.2020

Vision - digital construction site

Partners

Consortium

- 18 Industry partners
- 4 University partners
- Associations (VDMA, VDBUM, VDI, ZDB)
- Research cluster (5G Lab)

Project duration

• 36 month starting 2019

TECHNISCHE

Impact of Latency on Efficiency

SoA Latency Values

The gamers were the first

The 5G Atom

throughou

Throughput

UC

U

C.

UC

5G

U C

U

Latency

requirements

The 5G Atom

1eTheoretical Maximum Throughput for IEEE802.11 Variants

Theoretical Latency for IEEE802.11 Variants

throughpu

The 5G Atom

Resilience

Throughput

UC

U C UC

5G

U C

Latency

requirements

5G LAB GERMANY

MULTI-PATH

Throughput

Single Path

Resilience

Security

Multi-Path Replication

Throughput

Resilience

Security

Throughput

Multi-Path Splitting

Resilience

Security

Throughput

Multi-Path Coding

Resilience

Security

Circuit Switched Networks

Communication Networks

Circuit Switched Networks

The Telephone System

The Telephone System

The Telephone System

The Internet

Paul Baran 1969

Communication Networks

Communication Networks

5G LAB GERMANY

Single Path vs. Multi Path

- Comparison with the <u>brain</u>
- Our brain uses multiple paths
- Reliability (Pain)

- Comparison with <u>ants</u>
- Food retrieval strategies

Access

5G LAB GERMANY

NETWORK SLICING

NGMN Alliance, "5G White Paper", White Paper, Feb. 2015.

5G LAB GERMANY

5G MOBILE EDGE CLOUD COMPUTING

Agile Distributed Mobile Edge Cloud

Х

Mobile Edge Cloud / Micro Cloud / Cloud шшш шшш шш шш

5G LAB GERMANY

Implementation Mobile Edge Cloud

4 elements with 16 odroids each equals 512 cores controlled by openstack

Mobile Edge Cloud Demo

- Browser based multiplayer game
- Game servers:
 - Run in the cloud, as a service
 - Latency to the cloud affects the game play (classic gamer's ping problem)
- Game can be migrated LIVE between the different cloud servers.
- Thus game always can run on the closest edge cloud server.

Mobile Edge Cloud Demo

- □ Five cloud servers:
 - Oregon (US), Frankfurt, Sao Paulo, Tokyo, Sydney
- One edge cloud
- Soft handover Zero downtime.
- Ghost' bots to showlatency effect
- Display latency, Jitter to each server.

Ψ··	LITE	KON DHANKING	SERVER: EDGE GLOUD		0631
Nor Sasilia	Edge cloud Proj 5 Jour 17 State artis	•	1		
	Frankfurt Prop. 21 Jthe: 10 Stars: 10	×.,			
	Oregon Prog. 145 Jitar: 28 Blate: ide				
	Sao Paulo Ang 291 Star: 17 Blate lite		SERVER: EDGE CLOUD		(9+8
	Tokyo Prog. 295 Sitter: 27 Itale: ide	\$3			
	Sydney Ping 388 Jiter: 33 Blate: ide	Χ,			
			Read B		
et 19 Develop Faster Al	af Dae		-		

Mobile Edge Cloud Demo - Measurement

- Use of Agile Cloud Migration (ACM) protocol, designed at TUD.
- □ Handover time (not downtime) Function of inter-server latency

Mobile Edge Demos

Mobile Edge Demos

5G LAB GERMANY

5G SDR SDN NFV

Software Defined Radio

GNUradio

New kid on the block LimeSDR Current activites at the chair

Interesting

Low latency Network coding at the edge Analog network coding Multi connectivity

PreSDN - Active Networking

Active networking is a concept for communication networks that allows

packets flowing through a telecommunications network to dynamically

modify the operation of the network by means of protocols.

Changing protocols on the fly.

Change protocols on the need based on:

Security protocols

Complexity

K. Revsbech, J. Heide, K. Hojgaard-Hansen, G.P. Perrucci, and F.H.P.Fitzek, "Energy saving potential using active networking on linux mobile phones," in European Wireless 2009, Aalborg, Denmark, may 2009.

Active Networking Example

K. Revsbech, J. Heide, K. Hojgaard-Hansen, G.P. Perrucci, and F.H.P.Fitzek, "Energy saving potential using active networking on linux mobile phones," in European Wireless 2009, Aalborg, Denmark, may 2009.

108

Active Networking

SDN & NFV

Software Defined Networks

SDN advocates to replace distributed static network protocols with centralized flexible software applications.

- Enables fast experiments with new ideas
- Fast deployment of software compared to long lasting standardization processes
- Optimization due to centralized control as a function of time
- New functionality can be deployed in nearly no time relocated, and upgradet depending on the needs.

Network Function Virtualisation (NFV)

NFV advocates to use generic hardware running software solution compared specialized hardware.

- Hardware becomes cheaper (COTS)
- Relocation of functionality to optimize network performance such as latency, capacity, etc.

• New functionality can be deployed in nearly no time relocated, and upgradet depending on the needs.

Motivation for SDN and NFV

SDN was motivated by the relation of *computation* and *communication*,

which led to new principles for *software* and *networking*.

NFV was motivated by the flexibility, timely deployment and financial gains

of *cloud and OTT providers*, which was not available to *network*

operators.

SDN and NFV are often intertwined

Motivation for SDN and NFV

SDN was motivated by the relation of *computation* and *communication*,

which led to new principles for software and networking.

Benefits & Promises of NFV

- Reduced equipment costs (CAPEX), through consolidating equipment and economies of scale of IT industry.
- Increased speed of time to market, by minimising the typical network operator cycle of innovation.
- Availability of network appliance multi-version and multi-tenancy, allows a single platform for different applications, users and tenants.
- Enables a variety of eco-systems and encourages openness.
- Encouraging innovation to bring new services and generate new revenue streams.

Benefits & Promises of NFV

- Flexibility to easily, rapidly, dynamically provision and instantiate new services in various locations
- Improved operational efficiency by taking advantage of the higher uniformity of the physical network platform and its homogeneity to other support platforms.
- Software-oriented innovation to rapidly prototype and test new services and generate new revenue streams
- More service differentiation & customization with reduced (OPEX) operational costs: reduced power, reduced space, improved network monitoring
- IT-oriented skillset and talent

SDN/NFV Demo

5G COMPRESSED SENSING

Advantage of NC over SoA Codecs

117

Compressed Sensing and Network Coding Characteristics

Compressed Sensing

- Linear superposition
- Random (sampling)
- Source aware
- Sparsity
- Under-determined
- Optimisation problem

$$y^{m \times 1} = A^{m \times n} x^{n \times 1}, m \ll n$$

Network Coding

- Linear superposition
- Random (coefficients)
- Source agnostic
- Over-determined (full rank)
- Linear system of equations

$$y^{(n+r)\times 1} = A^{(n+r)\times n} x^{n\times 1}, r \ge 0$$

Combine NC and CS

- Objective: Combine CS and NC (analog and digital) in theory and implementation to improve delay ↓, resilience ↑ and complexity ↓.
- Agnostic combination CS/NC: Only individual gain per camera (spatial correlation not exploited), reconstruction/decoding at the sink resulting in high complexity
- Proposed joint CS/NC design (analog and digital): Holistic innetwork processing based on compressed compute and forward (CCF) with distributed partial decoding and clever protocol design (active sensing).

Motivation – Pure Network Coding in GF2 (2009)

WV Pedersen, J Heide, FHP Fitzek, T Larsen; PictureViewer-a mobile application using network coding; European Wireless Conference, 2009; EW 2009; pages 151-156.

Motivation – Pure Network Coding in GF2

Received Coded Packets	Decoding Matrix

Motivation – Network Coding in GF2 with Sorting

Received Coded Packets	Decoding Matrix

5G LAB GERMANY

5G SILICON

Parallelism = 2 Comm. Links = 1

P = 8

C = 28

P = 64C = 2016

Highly Adaptive Energy-Efficient Computing High-Rate Inter-Chip Communications

Optical Interconnect

- adaptive analog/digital circuits for e/o transceiver
- embedded polymer waveguide
- packaging technologies
 - (e.g. 3D stacking of Si/III-V hybrids)
- 90° coupling of laser

Radio Interconnect

- Top-of-3D-stack antenna arrays
- analog/digital beam steering and interference minimization
- 100Gb/s 1Tb/s
- 25 GHz channel @ 200GHz carrier
- 3D routing & flow management

The Outlook: The **HAEC** Box in 2030+

HAEC Playground

- Compute-cluster: Multiple compute units
 - Compute node: quad-core Odroid (bigLITTLE)
 - 4 modules x 4 boards x 4 Odroids (~ 1000 cores in total)
- Controller: Manages compute units
 - Inter-connected per-layer controllers
 - Controls network configuration and processes
- Network: Realizes flexible topology
 - Single switch per layer (managed & stackable)
 - Flexible reconfiguration according to chosen scenarios
- Gateway: Connects to external network
 - Single gateway per cluster
 - Separation of internal from external network
- API for HAEC Hardware: USB 3.0, SPI & I2C, GPIO
- API for HAEC Software:
 - Virtualization over all cores and storage places
 - Using OpenStack as cloud operating system

COMMUNICATION NETWORKS

Communication Networks

Packet Switched Networks

Massive throughput

Massive reduction in delay

Massive resilience

Massive safety & security

Massive heterogeneity

Massive sensing

Massive energy saving

Internet of Things (IoT)

Smart Grids

Remote Cars

Flying Internet

Robotics

Communication Networks

Communication Networks

4G and before

4G and before

4G and before

API available

No API available

"It is not the strongest or the most intelligent who will survive, but those who can best manage change."

Charles Darwin

ComNets Testbed

5G makes everybody happy!

Tactile Internet

Recently, the Tactile Internet has been defined by the IEEE P1918.1 Tactile Internet ad-hoc definition group as

"A network or network of networks for remotely accessing, perceiving, manipulating or controlling real or virtual objects or processes in perceived real time by humans or machines."

Motivation - What are we doing it?

Current VR/AR solution have onboard computing to support ...

Current VR/AR solution have onboard computing to support standalone apps to show static behavior or to show video (unicast).

PROBLEM Content

In-flight entertainment disturbs other passengers while not providing any privacy for the individual, furthermore restricted physical space for screens depending on eco, business or first class

SOLUTION Content

"Glasses for the Masses", our innovative concept, creates a new flying experience Enjoying in-flight entertainment through glasses: Private, nondisturbing, light-weight and virtually unlimted

Not only entertainment – airlines can show in-flight safety videos to every passenger while they still are able to interact with the environment \rightarrow MULTICAST

Implementation of multicast into glasses with network coding.

Tactile Internet – Stand Alone App

Tactile Internet – Outsource Complexity

Tactile Internet – Outsource Complexity

BARCELONA 27 FEB-2 MAR 2017

20

SEMA WORLD CONGRESS

-11-11

BARCELONA 27 FEB-2 MAR 2017

Prepare for billions

Hewlett Packard Enterprise

T.

Orchestrating a brighter world

Current challenges

- Sensor and Actuators
- Communication Networks
- Human modelling and understanding

wandelbots

