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Abstract

In recent years, the number of Internet users and their bandwidth requirements have steadily
increased. During peak periods, high bandwidths often lead to service failures because the
communication connections are overloaded. Large Internet companies such as Google and
Facebook are therefore using Software-Defined networking to cleverly distribute loads in the
network to minimize downtime. Recent research has tried to determine and optimize this
load distribution with Machine Learning (ML). In this thesis, an approach based on Reinforce-
ment Learning, a discipline of ML, is used, as it does not require any previously determined
data, but can learn to route advantageously through interaction with the network.
The heterogeneous and distributed structure of the Internet makes the application of ML
complicated. Thanks to central control and extended measurement capabilities, SDN can
simplify this. Current approaches use the features of RL and SDN not for direct routing but
to determine graph weights. Based on these graphs, the data streams are then routed or
split using well-known algorithms such as Shortest Path First.
Instead, this work pursues an approach in which an RL framework can directly influence the
network through routing decisions to optimize routing based on connection latencies. This
makes it possible to create a system that optimizes itself without the need for a model. For
this purpose, an application was developed, which was implemented in an SDN controller.
It can measure current latencies and independently perform routing decisions. Substantial
measurements were performed in a realistic emulated environment to compare the imple-
mented RL approach with state of the art routing. In addition to various RL parameters,
dynamic data stream behavior and several topologies were investigated. The results show
the advantage of using the RL solution over shortest path algorithms to ensure low latency
in the network and to prevent congestion.
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Zusammenfassung

In den letzten Jahren hat sich die Anzahl der Internetnutzer und deren Anforderungen an
Bandbreite stetig erhöht. Hohe Bandbreiten führen zu Stoßzeiten häufig zu Ausfällen der
bereitgestellten Dienste, da die Kommunikationsverbindungen überlastet sind. Große Inter-
netunternehmen wie Google und Facebook versuchen deswegen mittels Software-Defined
Networking Lasten im Netzwerk intelligent zu verteilen um so Ausfälle zu minimieren. Aktu-
elle Forschung hat versucht mit Machine Learning (ML) diese Lastverteilung zu bestimmen
und zu optimieren. In dieser Arbeit wird ein Ansatz basierend auf Reinforcement Learning,
einer Disziplin von ML, eingesetzt, da es keine vorher ermittelten Daten benötigt, sondern
durch Interaktion mit dem Netzwerk selbständig lernen kann vorteilhaft zu routen.
Die heterogene und verteilte Struktur des Internets macht die Anwendung von ML kom-
pliziert. Dank zentraler Kontrolle und erweiterter Messfähigkeiten, kann SDN diese jedoch
vereinfachen. Derzeitige Ansätze nutzen die Möglichkeiten von RL und SDN nicht zum di-
rekten Routen sondern um Graphgewichte zu ermitteln. Anhand dieser Graphen werden
die Datenströme dann mit altbekannten Algorithmen wie Shortest Path First geroutet oder
aufgeteilt.
In dieser Arbeit wird stattdessen ein Ansatz verfolgt, bei dem ein RL Framework direkt durch
Routing Entscheidungen auf das Netzwerk einwirken kann, um das Routing anhand der Ver-
bindungslatenzen zu optimieren. Dadurch ist es möglich, ein System zu schaffen welches
sich selbstständig optimiert ohne ein Modell zu benötigen. Hierfür wurde eine Applikation
entwickelt, welche in einen SDN Controller implementiert wurde. Diese kann aktuelle Laten-
zen messen sowie selbstständig Routing Entscheidungen durchführen. Es wurden Messun-
gen in einer realistischen emulierten Umgebung durchgeführt, um den implementierten
RL Ansatz mit State of the Art Routing zu vergleichen. Neben verschiedenen RL Parame-
tern wurden dabei dynamisches Datenstromverhalten und verschiedene Topologien unter-
sucht. Die Ergebnisse zeigen den Vorteil der Nutzung der RL Lösung gegenüber Shortest
Path Algorithmen, um eine geringe Latenz im Netzwerk zu gewährleisten und Congestion
zu verhindern.
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1 Introduction

Motivation

An explosive growth in network size and a rising number of users with increasing traffic de-
mands lead to an extension of the network infrastructure of Internet Service Provider (ISP).
This is necessary to meet the Quality of service (QoS) requirements in an environment of
increasing demand and strong dynamics due to unpredictable user behavior. QoS refers to
the description and measurement of the network quality by quantitative parameters such
as latency, packet losses, bandwidth and jitter. Additionally, the provider needs to com-
ply with the Service Level Agreement (SLA), an arrangement between the service provider
and its costumers that defines the assured service availability and performance. In packet-
switched networks, congestion can be a reason for not meeting these requirements. Con-
gestion occurs in network links if the demanded traffic rate is higher than its capacity and
results in a increased latency and packet losses. In order to comply with the obligations
defined in a SLA, the network is overprovisioned [2][3], meaning the allocation of resources
to a greater extent than necessary, often as high as two or three times the typical demands.
This results in a greater resilience, but the additional switches and fiber optic connections
mean higher acquisition and operating costs for the network provider. A cheaper alterna-
tive would managing the network more efficiently and reactive by balancing the load. In
packet-switched networks, the optimization can take place via a beneficial selection of paths
for traffic flows between given source-destination pairs. The further optimization ability is
provided by Software-Defined Networking (SDN) through the centralization of control and
monitoring capabilities. Another advantage of SDN is the possible softwarization, which al-
lows the usage cheaper and easily replaceable off-the-shelf devices instead of expensive,
application-specific and proprietary systems that are provided by a limited amount of ven-
dors. In addition, it would also be possible to develop and operate network management
software in-house instead of relying on vendor solutions [4].
Additionally to ISPs, large corporations such as Google or Facebook, whose contents ac-
count for a significant part of the data transferred over the Internet, have encountered the
benefits of network optimization to increase the efficiency of their inter-Data Center (DC)
networks using solutions based on SDN [5][6]. The common performance objectives are
minimizing the end-to-end latency, preventing congestion and achieving a higher resource
utilization, so overprovisioning can be omitted. Over the years, a large set of network mod-
elling and optimization strategies have been developed [7]. Following the characteristics
of network optimization, it is only possible to optimize what is modellable. Routing while
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complying with the QoS principles often involves complex multi-constrained optimization
problems, such as integer or mixed-integer programs, which scale polynomial due to their
NP-hardness [8]. Another technique are models based on Queuing Theory [9], which often
rely on assumptions such as traffic generation based on a poisson distribution what can
differ from networks in reality [10]. Additionally, these models usually scale poorly because
network problems involving multi-hop routing would result in a complicated multi-point to
multi-point queuing network. A solution can provide Machine Learning (ML), which has got
much attention in research and industry through its application to a wide range of compli-
cated problems. An interesting area of Machine Learning is Reinforcement Learning (RL),
a paradigm that allows systems to learn how to behave beneficial by interacting with the
environment. Therefore RL can address complex optimization tasks even without a model
and only relies on a feedbacks for its actions. The usage of a controller in an SDN network
makes it possible to interact directly with the network by customizing forwarding decisions
in switches and collect the resulting network state with its metrics such as the latency, which
can serve as the feedback.
As a consequence of using RL, it is possible to optimize to different objectives in a network
without relying on complex, knowledge- and labour-intensive modelling.

Task

To investigate the application of Reinforcement Learning for routing, a framework should
be designed and implemented in the scope of this work. The RL framework is obliged to
select routes beneficially to optimize for a performance objective, in this work the latency of
all flows in the network. The necessary components for observing the network metrics such
as the link latency have to be implemented. It is supposed that the controller is able to route
at run-time and thereby decrease the overall latency. The evaluation should take place in a
heterogeneous network with varying traffic and different end-to-end connections. Also the
dynamic behaviour during the adaptation process ought to be observed and evaluated. A
proper test network with the possibility to emulate non-stationary traffic should be provided.

Structure

Chapter 2 gives an introduction of the topics of this thesis. Firstly a look is taken at Software-
Defined Networking, especially its application for routing and traffic engineering problems.
Then Routing and Traffic Engineering paradigms are presented with an overview of the cur-
rently used technologies. This is followed by a discourse of Reinforcement Learning and its
use cases in RL networks. In chapter 3, the implementation, including the components of
the controller and the individual measurement setup, is described. Chapter 4 contains the
measurements of the different RL strategies and measurement setups. The resulting find-
ings are evaluated and it is shown how the RL framework can benefit to optimize the latency
or network utilization.
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2 Related Work & Background

2.1 Software-Defined Networks

”Software-Defined Networking (SDN) refers to a new approach for network programmability,
that is, the capacity to initialize, control, change, and manage network behavior dynamically
via open interfaces” [11]. The higher programmability is achieved by dividing the network
into two different layers. the control plane and the forwarding plane. The forwarding plane
consists of Network Elements (NE) (i.e. switches), which handle the packets via actions like
forwarding or dropping. Figure 2.1 illustrates the concept of SDN. The actions of the switches
depend on the instructions received from the control plane, which consists of one or more
controller entities that manage the routes (e.g. flows) in which the packets are forwarded.
These forwarding rules are passed to the switches. The packets are identified by specific
characteristics including MAC or IP addresses, ports or Ethernet types and are matched to
the actions through a Flow Table. The controller can be realized by several frameworks, e.g.
NOX1, Floodlight2 or Beacon3. For this thesis, the ryu Controller 4 was selected, because
ryu combines an easy and agile development via python with a comprehensive documen-
tation. As forwarding devices , switches that support SDN are required. Therefore Open
vSwitch (OVS), a software switch introduced in [12], was chosen. OVS is a high performance
multilayer software switch which delivers the benefits of vendor independence and a high
flexibility. Additionally, OVS supports OpenFlow [13], a protocol developed by Stanford uni-
versity back in 2008, which serves as an interface between switches and controller. Open-
Flow have gathered broad interest since Google announced the usage of OpenFlow for the
optimization of B4 [5], an internal Wide Area Network (WAN) network which connects their
data centers around the globe.

1Nox Controller, github.com/noxrepo/nox
2Floodlight Controller, projectfloodlight.org
3Beacon Controller, openflow.stanford.edu/display/Beacon
4ryu controller, osrg.github.io/ryu/
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Controller

Figure 2.1: Overview of the SDN structure containing a data plane with several OVS switches
and a control plane with a ryu controller.

2.1.1 Advantages of SDN

Today, many features such as security, routing and energy management are delivered by
a small amount of companies in a proprietary manner, highly priced and complicated to
integrate. These features are often integrated as part of their whole solution package and
a dynamic composition of different vendors is not easily achievable. Some parts are even
offered as additional hardware, making it difficult to integrate, adapt or extend the individual
parts as a complete system. SDN solves the problem of integrability and missing flexibility by
its high programmability. Additional features can be easily implemented into the controller
and can use the obtained global knowledge about the current network metrics. Beside WAN
networks, SDN is also applied in campus networks, an internal network of a companies or
institutions that manage their networks by themselves [13]. These networks are often af-
fected by a diverse and fluently changing user behaviour in terms of working location and
strongly varying traffic due to bandwidth intensive services such as video conferences and
data distribution within the company. Predefined or static network deployments can strug-
gle to handle bursting traffic. Therefore it is challenging to meet the QoS requirements of
latency and jitter sensitive traffic by relying only on the best-effort model. Software-Defined
Networks can help with their flexibility to shift traffic and relieve occurring bottlenecks. For
companies, Security and User Identification is an important issue as well. SDN enables the
usage of Network Functions Virtualization (NFV) [14], an emerging technology that allows to
implement network functions such as domain named services or security options like fire-
walls. NFV leverages the flexibility of a deployed network by allowing to deploy network func-
tions fast, location independent and tailored to the current needs. In combination with NFV,
SDN helps in data centers to deliver higher network utilization, better resilience against link
failures, and a dynamic adaption on fluctuating user demands. For every application area,
SDN helps to reduce complexity and raise programmmibility. Eventually, SDN allows a signif-
icantly faster innovation and serves as an enabler for more efficiency in modern networks.
The advantages of SDN are clear and should be applied for a reliable and effective routing.
mi

2.2 Routing

In simple terms, network routing breaks down to the ability of determining a path to send
a piece of information from point A to point B in an electronic communication network.
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Therefore an appropriate path, beneficially as efficient and quick as possible, needs to be
determined. In a communication network, the quality of a path depends on several factors
like the reliability, on the provisioned bandwidth and the end-to-end delay (i.e. latency). The
delay in a network is composed of the propagation, serialization, queuing and the process-
ing delay. Propagation delay is the time the signal needs to be transmitted from one point
to the another in a link. It depends on the length of the wire between the two endpoints and
the medium (commonly copper or fiber). Serialization delay describes the time it takes for
an interface to push all bits into the wire depending on the datarate and the packet’s frame
size. The processing delay can be by processes such as bit error checking or forwarding
decisions in the switches. The queuing delay defines the waiting time of the packets in a
queue until being transmitted if the capacity of a link is exceeded. In this work, the focus
lies on the propagation as well as the queuing delay, because the propagation delay repre-
sents the physical distance between switches and the queuing delay is the affected one if
congestion occurs, i.e. if the links are overloaded due to improper routing decisions. In a
multi-hop network, these factors depend on quality of the intermediate forwarding devices
and the links in between them. The forwarding devices should deliver efficient and reliable
switching. A quantitative measure of the link quality can be the latency, available bandwidth
or transmission errors. Responsible for discovering possible paths by communicating with
neighbors is the routing protocol. Additionally, routing protocols are responsible for commu-
nicating congestion in the network. Congestion would result in a higher end-to-end delay
or limit the reachability of network nodes. If an efficient path has been discovered by the
protocol, the next possible hop is saved in a table, called the routing table. The determina-
tion of the best next hop depends on the so called routing algorithm. When the best path is
chosen, the next hop is saved in the forwarding table.

2.2.1 Intradomain vs. Interdomain

As the internet grows continuously, it is divided into different parts, called Autonomous Sys-
tems (ASs) [15], which are controlled by a single entity or organization, commonly by an
Internet Service Provider. An AS can consist of one or several networks, but all of these sub-
networks share an affiliated routing logic and collective routing policies. Each AS has to be
uniquely identifiable, achieved by the so called autonomous system number and is issued
globally by a central authority. To route inside of an AS, a type of routing protocols named
Interior Gateway Protocol (IGP) , is used. The routing of packets between different ASs is
addressed by the Border Gateway Protocol (BGP). Used for the exchange of routing and
reachability information, it serves as the connection between the networks of different ISP
and allows the functionality of the internet as it is known today. Additionally, it offers stabil-
ity by rerouting over another AS in case of failures. Within the scope of this work, only the
routing within one network and hence falling under IGP, is considered. IGP can be divided
into two types, the link-state and the distance-vector routing protocols.

2.2.2 Link-state & Distance-vector routing

To identify efficient paths in a network, it is necessary to update the routing tables appro-
priately. There are two ways the tables are updated, depending on how the information
of the network is shared within the forwarding elements. One way is to share the complete
knowledge about the network with each other. Taking a routing decision based on the whole
information of the topology, which can be symbolized as a weighted graph, is called link-state

routing. Another way is to share their routing tables, only with the neighbors. This normally
takes place in periodic updates and changes in the network (e.g. link failures) are advertised
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sequentially across the entire network. However, the main difference is the point of view.
In case of distance-vector routing the path calculation is based on the neighbors point of
view, while in link-state routing the whole topology is taking into account. In SDN, the con-
troller can receive knowledge about the network topology and state by the switches. As a
result, the controller can construct a weighted graph and perform algorithms to determine
the best possible path.

2.2.3 OSPF

As specified in [11], the control plane is usually in charge of topology discovery, route selec-
tion and mechanisms in case of link failures. The common routing protocol in IP networks
is Open Shortest Path First [16]. This static routing scheme is based on shortest path al-
gorithms, commonly Dijkstra [17], which are performed on a graph based on the topology
information. OSPF has an extension for QoS [18], which dynamically changes the weights
depending on measured traffic. However it is often not implemented in real networks be-
cause of two major reasons: Firstly, the changing of the weights of the links can lead to
many routing updates that can influence negatively the traffic in other parts of the network.
Secondly because of the awareness of routing loops, meaning that packets get routed in
between two or more routers because a delayed update of their routing and as a result of
their forwarding table, which can occur before the convergence of the routing protocol [19].
As SPF routing based only on hop count or latency ignores the influence of increasing levels
of traffic in the links, which can cause congestion.The incompleteness of algorithms based
on SPF leads to another interesting and popular topic of the network-world called Traffic
Engineering.

2.2.4 Traffic Engineering

To overcome the shortages of SPF routing algorithms, it is necessary to include traffic con-
stellations into the selection of paths. Traffic Engineering (TE) has the goal to route traffic by
balancing several objectives:

1. Maximization of throughput
2. Spread the link utilization fairly across the network
3. Ensuring safe operations by adding awareness of link failures or changing traffic pat-

terns
4. Minimizing the latency of individual or all connections

TE is a critical topic because it allows to route more traffic in a significant scale than using
simpler approaches like routing all traffic based on shortest paths [20]. As it is an important
topic in the network community, a broad range of solutions on this optimization problem
based on different backgrounds were developed [21]. Some selected approaches are de-
scribed later in section 2.5.2.

2.2.5 Routing in SDN

In terms of SDN, to gain knowledge about the network topology, the controller uses the Link
Layer Discovery Protocol (LLDP) [22][23]. During the link discovery, the controller sends a
LLDP packet out to one switch. The moment the switch receives the packet, he sends it out
through all his ports. When the other switches receive the LLDP packet, they do not have
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a corresponding rule in their flow table for this packet type. As a result, the switches send
a message containing the packet to the controller. From the information contained in the
packets, the controller can derive the connections between the switches and thereby the
topology. This results in an unweighted graph on which the controller can perform shortest
path algorithms to find the way with the smallest amount of hops If the controller has the
capacities to measure network metrics such as latency or the current load over the links, it
is possible to construct a weighted graph which can be used for the path calculation. With a
smart selection of metrics as costs for the graph, the chosen path can comply with Quality
of service (QoS) requirements. Commonly, the weights are assigned statically and updated
hence the paths are recalculated only if a topology occurs. In SDN, this can occur because
of distributed controller entities, which might have different information bases. Another
reason could be a high end-to-end delay between the controller and the switches that lead
to a delayed update of the forwarding table.

2.3 Problem formulation

Let G(N,L) be a network with a set of links L connecting the nodes N, in case of this work
network forwarding devices (i.e. switches). The capacity of a link is denoted by C(l). In this
thesis, the focus lies on unicast communication, meaning the data is transmitted only from
one sender to another receiver at a time. Each of these transmissions of sequential packets
is called a flow f . The communication from the source host hs to the destination host hd will
be defined as fhs,hd

. How the traffic rate is defined depends on type of user demand that can
be distinguished by the transport layer protocols TCP and UDP. In UDP a fixed traffic rate is
demanded depending on the application. For TCP, the rate for a connection is rising until
it reaches the maximum level, the network can deliver [24]. In the scope of this work, the
focus lies on fixed demanded traffic rates bf for each flow and a flow cannot be splitted over
different paths. The traffic rate in link l caused by flow f is defined as bf (l). So the problem
can be defined as a multi-commodity flow problem with non-splittable flows [25, p. 145 - 147].
Each flow has a cost w(f ), that can serve as representation of different functions like delay,
jitter, reliability or probability as congestion. To define it as the Routing Problem, the cost W

of all flows F should be minimized:

minimize W = ∑
f∈F

w(f ) (2.3.1)

Different constraints can be added, such as the capacity C(l) for each link. It depends on
the selected path, if a flow does influence a link l with its traffic rate bf . To take that into
consideration, an indicator δf ,l is introduced which is set to 1 if a flow uses the link and to 0
otherwise. As it would cause congestion, it should not be exceeded:∑

f∈F
δf ,lr

f (l) ≤ C(l), ∀l ∈ L (2.3.2)

Solving this problem means to minimize a cost function, often the end-to-end delay, while
respecting the physical capabilities of each link. Another optimization objective can be the
maximization of the network utilization. For network utility maximization, the links should
be chosen to achieve the maximum possible throughput between the hosts. As mentioned
before, the user demand does not have to be fixed. For this case, the optimization objective
lies on finding a path constellation which maximizes the traffic rate of the flows.
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2.4 Reinforcement Learning

2.4.1 Machine Learning

Machine learning is categorized as a subfield of Artificial Intelligence and provides methods
to give systems the ability to learn and improve from experience [26, p. 2-3]. The methods
can be categorize by the source the system takes to learn, whether it is data, instructions or
the direct interaction with the environment.
Unsupervised Learning describes the search for structure in unclassified and unlabeled data.
The regular goal is to detect characteristics in the data, like clusters or anomalies. A typi-
cal application is e-commerce where clustering algorithms are used to create a costumer
specific recommendation system [27].
In Supervised Learning, the training is performed with labeled data. The system learns this
structured data, known as training data. It then is validated by its performance to categorize
new data, called test data. A typical example is object classification in images [28].
In this thesis, Reinforcement Learning (RL) is applied, which gives the opportunity to learn
directly by interacting with the environment. The learning entity, called agent, receives an
immediate signal for each of his actions and the resulting state transition. The signal is a
measure of the goodness of his decision, called the reward. One of the characteristics of RL
is the objective of the agent to maximize the cumulative reward and not only the immediate
one, meaning the agent has the ability to learn how to act for achieving a long-term goal.
The main difference between Supervised and Reinforcement Learning is that in Supervised
Learning the teaching takes place by example, given by provided data, and in Reinforcement
Learning by experience gained by interaction with the environment.

2.4.2 Markov Decision Processes

To provide a mathematical framework for the sequential decision making, finite Markov De-

cision Processes (MDPs) are used. They make it possible to consider not only immediate re-
wards, but also future states and rewards for the action selection. The interaction between
the agent and environment takes place in discrete time steps t = 0, 1, 2... . A visualization of
the learning process is shown in figure 2.2. Every time step t, a model of the environment,
state St ∈ S is given to the agent. According to the given information, the agent selects an
action At ∈ A(s). As a result of the chosen action, the agent receives a reward Rt+1 ∈ R ⊂ R
in the following time step. In MDPs, the Markov Property applies, which defines the charac-
teristic that the transition probabilities and rewards only depend on the current state and
there is no dependency to the history of states that have been visited before.

Figure 2.2: Interaction between the agent and environment [1].
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All sets of actions A, rewards R and states S contain a finite amount of elements. Due to the
Markov Property, the probability distribution of the following state s′ ∈ S and of the resulting
reward r ∈ R are only dependent on the action and the previous state.
The dynamics of a Markov Decision Process are reflected by an ordinary deterministic four-
argument function p : S×R× S×A→ [0, 1] called the dynamics function. p(s′, r|s, a) defines
the probability distribution for each possible state transition to s′ in s taking a while receiving
reward r. As a conditional probability distribution over each choice of state s and a, it follows:∑

s′∈S

∑
r∈R

p(s′, r|s, a) = 1 (2.4.1)

If the reward is not taken into account, p results to be a state-transition probability of three
arguments p : S×S×A→ [0, 1]. One of the reasons of using the finite MDP as framework for
Reinforcement Learning is the probabilistic behaviour of state transitions due to previous
actions and state. It can be beneficial as an abstraction of an objective-directed learning by
interacting with the environment.

Goals and Episodes

Basically, the goal of the agent is to maximize the total amount of the rewards he receives
by the environment over the time steps, specified by the expected return:

Gt = Rt+1 + Rt+2 + ... + RE . (2.4.2)

E defines the terminal state of the agent-environment interaction. A terminal state is the
end of each iteration over the environment , called episode. One of the first applications of
Reinforcement Learning was the studies by Arthur L. Samuel, a pioneer in the field of Artificial
Intelligence. He let two RL agents compete against each other in the game of checkers [29].
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Figure 2.3: Representation of the frozen lake environment and the possible actions of the
agent.

To describe the elements of RL properly, an example is introduced. The environment, as
shown in figure 2.3 is a frozen lake which is broken down into a grid world. The world consists
of 16 different states with different types: a starting state (B), frozen surfaces (Z), holes (H)
and a goal state (U). The objective of the player (i.e. agent) is to find a way from the starting
state B to the goal state U. He can choose from four different actions A that are numbered
in the negative mathematical way (clockwise): moving to the north a1, east a2, south a3 or
west a4. If the agent is on the border and chooses a direction to an undefined state, he
remains in his current state. In this setup, the terminal states are the goal U and the holes
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H. For moving into a hole, the agent gets the reward rH = –1, but in the case he reaches
the goal he earns the reward rU = 5. As the agent wants to maximize his gained reward, he
learns how to act in the environment. In this case, he learns to avoid falling into the holes H
and finding a way to the goal U.

Discounting

The expected return G is calculated by equation 2.4.2 by the value of the further states the
agent will visit. The agent does currently have no interest in reaching the goal fast because
the calculation does not take the amount of future steps into account . This can lead the
agent to stay in the world infinitely. To prevent that, discounting is introduced. The parameter
γ defines the discount rate and specifies how much future rewards contribute to G.

Gt = Rt+1 + γRt+2 + γ2
Rt+3 + ...γE–t–1

RE = E–t∑
k=1

γ
k–1

Rk+t (2.4.3)

A reward received after k time steps will be valued γk–1 of the amount if it would have been
gained currently.
If γ ∈ [0, 1), it is called discount factor, meaning that expected rewards in future states Gt+1
are valued less than they would be valued in the next state Rt+1. Thus it is guaranteed that the
sum of rewards is always finite. Through discounting it is possible to influence the agent’s
behaviour over several time steps. In the presented example, the agent would prefer to
choose a route that leads him directly to his destination without taking detours.

Value Functions and Policies

To determine, how beneficial it is to be in a certain state, value functions v(s) are used. Over
time, the agent learns how to behave in an environment, so taking a specific action a in a
state. This behaviour is summarized in a policy π, which the agent follows. A policy provides
the agent with rules to decide for an action in a state, in other words π defines the agent’s
behaviour and provides a mapping of the actions of the actions a to a state s [30, p.521]. If the
agent follows the rules provided by policy π at a certain time step t, then the stochastic policy

π(a|s) is the probability of taking action At = a in St = s. It specifies a probability distribution
across all a ∈ A(s) for every s ∈ S. The value vπ is defined as the future rewards that can be
expected from acting according to a policy π. Different methods of Reinforcement Learning
specify the way the policy changes by gaining experience. The value vπ of acting according
to a policy π in state s is defined by it’s expected value:

vπ(s) = Eπ[Gt|St = s]. (2.4.4)

To also give value to an action, qπ(s, a) is introduced:

qπ(s, a) = Eπ[Gt|St = s, At = a]. (2.4.5)

It can be viewed as a measure of quality (in terms of the reward expectation) of taking a
specific action in a state s while following policy π.
The expected return Gt from 2.4.4 can also be expressed by:

Gt = Rt+1 + γRt+2 + γ2
Rt+3 + ...= Rt+1 + γ(Rt+2 + γ(Rt+3 + γRt+4 + γ2

Rt+5 + ...))= Rt+1 + γGt+1 (2.4.6)
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Following for the value function:

vπ(s) = Eπ[Rt+1 + γGt+1|St = s] (2.4.7)= ∑
a

π(a|s)
∑

s′

∑
r

p(s′, r|s, a)
[
r + γ Eπ[Gt+1|St+1 = s

′]
]

= ∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (2.4.8)

Equation 2.4.8, called Bellman equation, links the value of the current state to its following
states. Starting from state s, the agent can select from the actions defined by policy π. Based
on the chosen action, it can end up in one of the successor state based on probability p

and collects the associated reward. The Bellman equation for vπ 2.4.8 indicates that the
discounted value of the following state (including all the following expected rewards) have
to be equal to the starting state. As mentioned before, the goal of the agent is to find the
policy π∗ with the highest expected reward.

Optimal policies and value functions

In finite MDPs exists at least one policy whose expected return is the highest in comparison
to others, vπ(s) ≥ v¬π(s) for all s ∈ S, called optimal policy π∗. The state-value connected to
the policy is defined as optimal state-value function:

v∗(s) = max
π

vπ(s) (2.4.9)

Acting in accordance to the best policy additionally provides the optimal action-value function

q∗.

q∗(s, a) = max
π

qπ(s, a) (2.4.10)= E[Rt+1 + γv∗(St+1) | St = s, At = a] (2.4.11)

By solving the Bellman optimality equation, it is possible to find a π∗. Taking the best action
according to the determined best policy deduce via equation 2.4.11 the Bellman optimally

equation for v∗

v∗(s) = max
a

qπ∗ (s, a)= max
a

E[Rt+1 + γv∗(St+1) | St = s, At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s′)] (2.4.12)

and q∗

q∗(s, a) = E[Rt+1 + γ max
a′

q∗(St+1, a′) | St = s, At = a]

= ∑
s′,r

p(s′, r|s, a)[r + γ max
a′

q∗(s′, a′)] (2.4.13)

As a reminder, the goal is to obtain the optimal policy π∗ by finding the optimal value func-
tions v∗ and q∗. The optimal policy is found, when the Bellman optimality equations 2.4.12
and 2.4.13 are satisfied.
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Dynamic Programming

To calculate the value functions v∗ and q∗, algorithms are provided by dynamic programming.
For solving a particular problem by dynamic programming, it is necessary to solve different
parts of the problem (sub-problems) and combine their solutions to attain an overall so-
lution. Recursive algorithms also describe algorithms that seek a solution to a problem by
solving several subproblems. If these subproblems have more subproblems and they over-
lap, the difference between recursive and dynamic programming based algorithms becomes
clear. Dynamic programming stores the calculated solutions of the subsubproblems and can
use them if the same problems arise again. This prevents recomputing if already calculated
problems occur again. The approach seeks to solve each ”non-overlapping” sub-problem
only once by storing the calculated solution. Typically, dynamic programming is applied to
optimization problems. It is possible that the problem has more than one possible solution,
but each solution is attributed a value and the goal is to find the maximum or minimum,
called optimal solution [31]. These technique is applied in RL by improving approximations
of v∗ and q∗ by updating rules.

Model-Based Learning

It is necessary to estimate the optimal values v∗ and q∗ that lead to optimal policy π∗. In
model-based learning, the dynamics p(s′, r|s, a) of the environment are known completely.
That simplifies the solving for the optimal state value function 2.4.12 through the optimal
action-value 2.4.13. The values are determined by iteration and successive updating an
estimation V (s) of the state value v(s) until V (s) converges, meaning the computed values
do not change anymore. This process is called policy evaluation, first an arbitrary policy is
selected and over time the estimate V (s) probably converges to the true state-value function
v(s) [32]. For solving MDPs by using the bootstrapping method from dynamic programming,
two types of algorithms for the iteration are introduced, the value iteration and the policy

iteration. The policy iteration algorithm is defined by two steps that are executed alternately.
First, the policy is evaluated by policy evaluation to approximate the state value Vπ for the
current policy π. In the second step, which is called policy improvement, the policy is updated
towards an improvement meaning that the agent will choose better actions over time. It
stays in contrast to the value iteration, in which the Bellman Equation 2.4.8 is iteratively
applied to update V (s) until the estimation is considered to be converged.

Model-Free Learning

As shown in the previous section, the optimal policy can be determined by using dynamic
programming. In realistic use cases, the model of the environments dynamics with its prob-
ability functions p(s′, r|s, a) is not always known. The knowledge can be gained by sampling
over the environment and use the obtained experience to learn optimal policies and value
functions. The value function 2.4.8 needs to be updated by sampling over the environment.
A mathematical framework provide the so called Monte Carlo methods by Sutton and Barto [1,
p. 91] which allows to approximate the optimal behaviour by sampling over episodes. Over
time, the estimation converges to the true state value function v(s). One drawback of Monte-
Carlo methods is that it is necessary to wait until an episode finishes for updating the value
V (s). Another approach to update the value is bootstrapping, which describes the process
of continuously updating the state value estimation while iterating across the states in an
episode:

V (St)← V (St) + α[Gt – V (St)] (2.4.14)
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α is defined as the learning rate, a quantitative measure of how strong the discrepancy
between current value and the new guess is weighted for the update. The learning rate
0 < α < 1 has an influence on the convergence speed. A small size results in slow conver-
gence while choosing it higher means that the algorithm always replaces the current esti-
mate with a new guess [1, p. 122-123]. As a result of bootstrapping, the agent only needs
to wait until the next time step t + 1 and has not to wait until the end of the episode for
updating the value V (St). The idea to use an estimated value is called Temporal Difference
(TD) learning. As defined in equation 2.4.2, the expected return is defined as the expected
value over the following states. Using only the estimation V (St+1) of one step ahead for the
update of V (St), as described in equation 2.4.15, is called one step TD or TD(0).

V (St)← V (St) + α[Rt+1 + γV (St+1) – V (St)] (2.4.15)

Within the scope of this work, the network should be optimized with an efficient, data-driven
and model-free approach. Therefore, algorithms which are based on TD-learning are now
discussed in more detail.

2.4.3 On- and off-Policy Methods

In comparison to learning the state-value function like TD(0) as shown in equation 2.4.15,
another option is to update the estimate Q(St , At) of the action-value function q(s, a) to obtain
a policy.
It can be distinguished between two types of methods. On-Policy methods estimate the value
of a policy and use it for control at the same time. In contrast, Off-policy methods follow a
behaviour policy and learn how to improve the target policy. In other words, when using an
On-Policy method, the Q-value is computed by a certain policy and is followed by the agent.
For an Off-policy method, the estimated action value Q(s, a) is computed in accordance to a
different policy, so an no-optimal policy while learning about optimal action-value function
q∗.

SARSA

The On-policy method SARSA tries to estimate the action-value function qπ(s, a) which is
performed by the agent following policy π including the exploration steps. The term SARSA
is derived from the quintuple of events < St , At , Rt+1, St+1, At+1 > describing the transition from
one state-action pair to the next. In equation 2.4.16, the state-action pairs are updated by:

Q(St , At)← Q(St , At) + α[Rt+1 + γQ(St+1, At+1) – Q(St , At)] (2.4.16)

It describes the experience the agent gains when he was in state St taking action At what
results in being in state St+1, receiving reward Rt+1 and continues with action At+1. The new
gained experience leads to an update of value Q(St , At) of α[Rt+1 + γQ(St+1, At+1)].
Q-Learning

In 1989, Watkins developed the off-policy TD control algorithm Q-learning [33][34]:

Q(St , At)← Q(St , At) + α[Rt+1 + γ max
a

Q(St+1, a) – Q(St , At)] (2.4.17)

It is an Off-policy algorithm, so Q(s, a), the learned action-value function, approximates di-
rectly the optimal action-value function q∗ independently of a policy. The part maxa Q(St+1, a)
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shows the property of an Off-policy algorithm that the Q-value Q(s, a) is computed according
to a different policy, in the case of Q-learning a greedy one by taking the maximum action-
value of the following state maxa Q(St+1, a) as an approximation for its value. This simplifies
the application and analysis of the algorithm because the value is estimated by the most
promising action and the actions are selected by the behaviour policy.

Comparison

Both algorithms are very similar, as shown in the algorithms 1 and 2. The main difference
between SARSA and Q-learning is how the expected value of a next state is determined.

Algorithm 1 SARSA
1: Initialize Q(s, a) with zeros
2: for each episode do
3: Initialize s

4: Choose a from s using policy π
5: repeatfor each step of an episode:
6: Take action a

7: Observe r, s′

8: Choose a′ from s′ using policy π
9: Q(s, a)← Q(s, a) + α[r + γQ(s′, a′) – Q(s, a)]

10: s← s′; a← a′

11: until s is terminal
12: end for

Algorithm 2 Q-Learning
1: Initialize Q(s, a) with zeros
2: for each episode do
3: Initialize s

4: Choose a from s using policy π
5: repeatfor each step of an episode:
6: Take action a

7: Observe r, s′

8: Q(s, a)← Q(s, a)+α[r +γ maxa Q(s′, a′)–Q(s, a)]
9: s← s′

10: until s is terminal
11: end for

Using the Q-learning algorithm, it is assumed that the value of the next state can be ap-
proximated by its highest Q-value. In comparison to just selecting the highest Q(s, a), SARSA
considers the Q-value selected by the policy π, the agent follows.

Tabular Learning

The algorithms, the agent can use to learn about the quality of respective actions in certain
states were described before. To enable him, to learn from his past actions, the Q-values for
each action in all possible states should be saved. In the case of discrete actions or states,
the values can be saved in a table. The corresponding table for the previously introduced
example in section 2.4.2 is shown in figure 2.4.
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Figure 2.4: Representation of table entries for the frozen-lake example.

The number of elements |Q| in the table depends on the number of states |S| and the pos-
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sible actions |A|.
|Q| = |S| · |A| (2.4.18)

Saving his experience gives the agent the possibility to learn from its actions. Nevertheless,
the agent should be able to explore the environment, but at the same time exploiting the
knowledge he already gathered.

2.4.4 Exploration vs. Exploitation

As there is no specification in the algorithms what the agent should do, the possible actions
are categorized into two types [35, p. 472-473], exploration and exploitation. The agent can
exploit his knowledge by choosing the actions that are estimated to maximize Q(s, a) and
thereby Gt . Another important part is to maintain sufficient exploration in order to construct
a more accurate estimate of the optimal q-function q∗. It is desirable to force an exploratory
character because of two reasons. Firstly, it should be possible to explore all possible states,
to find the global maximum and to not converge into a local minimum. Secondly, in a dy-
namic environment, the system should react to changes in an efficient manner. So the a
continuous exploration of different states in the environment should be provided. But at
the same time, a strong exploration can lead the agent performing actions that result in a
lower reward. A measure for the expected decrease of the reward due to not acting optimal
is given by the regret [36]. It defines the difference between the gained reward from the
agent’s policy to the highest reward that can be earned by behaving optimally. The explo-
ration can take place by using different strategies. A good overview and comparison in a
dynamic environment is given in [37]. In this thesis, the focus lies on the three commonly
used exploration strategies.

ε-greedy

The first approach is ε-greedy search. Greedy is used in computer science to describe algo-
rithms that take the choice that looks optimal at the moment [31, p. 415]. The decision is
based on the hope that the locally best choice leads to a global maximum, but can lead to
misconceptions. So it is useful to implement randomness to preserve the exploratory char-
acter. The probability ε determines whether a random action is selected. With a probability
of 1 – ε, the best action in terms of the highest expected value v∗, is chosen.

π(s) = {arg maxa∈A(s) Q(s, a), with probability 1 – ε
select random action, otherwise

(2.4.19)

Choosing the highest valued action, previously referred to as greedy, is called exploitation.
Often it is not desired to explore infinitely what can be achieved by a decreasing ε over time,
called annealing.

Softmax Function

The second widely used exploration strategy is the softmax method, which is also known
as Boltzmann distribution. It converts the values into probabilities for each action of the
states and samples over the results. The softmax function, shown in equation 2.4.20, can
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be controlled via a parameter called temperature τ.

p(a|s) = exp (Q(s, a)/τ)∑
b∈A(s) exp (Q(s, b)/τ) (2.4.20)

A high τ leads to a more explorative behaviour and a low τ favours the actions with higher
values. As mentioned before, it is often desired to decrease exploration over time. This can
be achieved by continuously reducing the value of τ, as mentioned before this process is
called annealing and allows to move smoothly from exploration to exploitation [30, p. 525-
526].
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Figure 2.5: Influence of different values for τ on the probabilities.

In figure 2.5, an example for the probabilities that were calculated from the action-values
Q(s, a) with different temperatures τ is shown. For the action-values, an array [u, 1, 1] is used
with varying one value u in a range of u ∈ [0, 5]. It shows that the probabilities of taking action
au rises with a higher action-value u = Q(s, au). How greedy the action is chosen depends
on the temperature τ and τ = 10 would lead for instance to a relatively strong exploratory
character, while τ = 0.1 results in an exploitative character.

Upper Confidence Bound

An enforced exploration is desirable to discover and evaluate all possible states. Therefore,
actions with uncertain outcome should be prioritized simultaneously to choosing the ones
with the a greater expected value. Upper Confidence Bound (UCB) is based on this principle,
which is called optimism in face of uncertainty [1, p. 35-36]. To do so, the number of times
an action was selected is included. Thereby, the actions are additionally valued by their
potential to be beneficial. The action selection relies on the Q-value and a bonus b+, also
called variance, which is a measure of the uncertainty of Q(s, a). It is defined as a relation
between the natural logarithm of the total number of visits N(s) and how many times N(s, a)
action a was chosen in state s. If an action a in a state s has never been chosen, meaning
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N(s, a) = 0, then this action is selected immediately.

A(s) = arg max
(

Q(s, a) + cb
+
)

= arg max
(

Q(s, a) + c

√
ln N(s)
N(s, a)

)
(2.4.21)

The degree of exploration can be adjusted with the help of parameter c > 0. With a higher
value of c, the bonus b+ is given more leverage what results in a more exploitative character.

2.4.5 Summary & Comparison

Above, the fundamentals of RL were explained, including model-based and model-free learn-
ing and exploration methods. In this section, components which are necessary for a model
free RL will be applied to the frozen-lake example described before.

Exploration Methods

The previously described methods that enable the agent to explore the environment au-
tonomously can be adjusted by different parameters. For the ε-greedy method (2.4.4), the ε
is the probability to take a random action instead of the most promising (i.e. with the highest
Q-value Q(s, a)). In the case of softmax funtion (2.4.4), which converts the Q-values to a prob-
ability distribution, the temperature τ controls the tendency to exploration. As described in
2.4.4, the bonus b+ in Upper Confidence Bound method depends on the number N(s, a) how
often an action has been chosen in relation to the total number of state visits N(s). For UCB,
the parameter c regulates the degree of exploration. In figures 5.9, 5.10 and 5.11 in the ap-
pendix, the resulting reward over episodes using different exploration strategies is shown.
The learning takes place over 50000 episodes and the average of 200 iterations is plotted.
The lower plot shows the average reward until 1000 episodes. When the agent starts to
learn, the average reward is negative, because he falls into holes while exploring. What can
additionally be seen for all exploration strategies is that a stronger exploration leads faster
to finding the goal state which returns a reward of 5. In the upper plots, the average reward
over a longer learning time of 50000 is shown. In figure 5.9, the plot for ε-greedy, can be
seen that on the long run, a strong exploration can lead to less reward due to the incen-
tive to discover more, what can lead to falling into the holes. This shows that exploring and
exploiting is a trade-off situation and the parameter τ, ε or c needs to be selected carefully
to achieve a balanced problem solving. Over time, the agent learns a policy, so how to act
properly. The Q(s, a) give the agent a value for each of the possible actions. In figure 2.6 on
the left, the resulting Q(s, a) for the frozen lake environment are shown after 105 episodes as
an average over 100 iterations following the ε-greedy strategy with an ε = 0.1. On the right
side, the rewards related to each state and the way the agent would take following the policy
π(s) = arg maxa Q(s, a) with the are demonstrated. The example shows three ways that have
the same length, so the agent learns a policy π in which all paths are treated equally.
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Figure 2.6: On the left: Resulting Q-values after 5 · 104 episodes, on the right: reward for
each area and the resulting optimal paths.

It shows how the expected value is reflected in the Q-values. The reason that the values
that hold the agent on the optimal path are not the same as the resulting reward is because
the agent follows the ε-greedy policy. To give an example how the expected Q(s, a) can be
calculated by hand, the state sB4 and action a3 is chosen. It is assumed that the Q-values for
the next state are already calculated and Q(sB4, a2) = 0 in this time step. To ease this example
calculation, inappropriate values for the discount factor, γ = 1.0 and for the learning rate
α = 1.0, are chosen. As explained in 2.4.2, a γ < 1 should be chosen for guaranteeing
convergence.

Q(sB4, a2) = Q(sB4, a2) + α · (r + γ · (1 – ε) · arg maxa(Q(sD4, a)) – Q(sB4, a2))= 0 + 1.0(0 + 1.0(1 – 0.1) · 5.0 – 0) = 4.5

With a learning rate of α < 1 or γ < 1, the Q-value converges with the times the action is
taken to the calculated value.
This simple example shows the potential of RL to solve optimization problems and deliver a
framework to learn to predict the consequences of certain actions in a state. In this thesis,
these properties should be applied to find an efficient routing policy in Software-Defined
networks.

2.5 Related Work

In the scope of this thesis, a data driven approach for routing based on RL is developed.
Combining machine learning methods with routing and traffic engineering were early in the
focus of research, beginning in the 1990s by Boyan and Littmann with their Q-routing [38]
algorithm. At this time, no central observer existed in a communication system[39]. This
changed with the introduction of the concept of Software-Defined Networking. For an SDN
controller it is possible to monitor the metrics of the network and directly influence the
network by modifying the flow table. Due to the larger amount of information available, it
is possible to perform a more precise optimization according to different objectives. On
the one hand, this led to approaches that were applied to different models and solution
methods. On the other hand, the focus is on novel approaches based on machine learning
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methods such as supervised or reinforcement learning. First, the different current meth-
ods for traffic engineering and routing are briefly described. If existing, they are followed
by their implementation into SDN networks. Finally, approaches based on machine learning
are presented. For routing, as described in 2.2.2, it is necessary to distinguish based on the
information base. As a reminder, in a network, if a forwarding device gets the view over the
network only based on its neighbors and it performs it routing decisions on that, we refer
to distance-vector algorithms. If the routing is based on the whole topology, which can be
converted into a graph, it is called link-state routing. The focus lies clearly on approaches
and protocols that are classifiable as link-state routing, due to the centralized authority and
view of the SDN controller. There are different approaches to solve the routing problem
formulated in 2.3. How the routing is performed depends also if it is performed when a new
flow joins the network, so if a connection is built between hosts. That happens if a user to
server communication or even a server to server communication is demanded. Therefore
this type is called on-demand routing in this work. Another type is to determine the opti-
mal path configurations before or after the routes have been established, referred to as
pre- and postcomputed. At last an overview of applications of machine learning, especially
Reinforcement Learning, in SDN is given.

19



2.5.1 On-demand

When a new route (i.e. flow) needs to be created through the network, the requirement is
that the route is calculated as fast as possible. Because of this, the common routing proto-
cols OSPF [16] and IS-IS rely on fast path search algorithms like Dijkstra [40]. If the route
is only calculated based on the Hop-Count, the algorithm ignores fully the conditions in the
link and metrics such as the delay or the available bandwidth. As it is possible that the least
hops do not mean the least end-to-end delay, that could lead to inefficient routing deci-
sion. Ignoring the link conditions can result in congestion or as it would be the case for TCP
connections, in lower throughput. To tackle these problems, as mentioned before, the QoS
extension have been introduced [18] but they it is often not implemented due to the inter-
ference of other network parts and routing loops. A more advanced approach is to expand
the shortest path routing with adding constraints.
The so called Constrained Shortest Path (CSP) routing minimizes or maximizes a an end-to-
end metric while being constrained by another metric. That can be extended to the Multi-
Constrained Shortest Path (MCSP) routing which has to comply with bounds of multiple met-
rics. Joksch delivered in [41] the first formulation of the CSP problem based on integer linear
programming. Therefore it is possible to solve it by dynamic programming [42].
A simple approach to solve the CSP and MCSP problem is the Fallback algorithm, introduced
in [43]. It computes the path with the least cost and then verifies if the constraints have been
met. The algorithm continuous to calculate paths by exchange the metrics and constraints
until a suitable path is found. Another approach is to enumerate through all possible com-
binations of paths and select the best solution that satisfies all the constraints. This would
lead to high computational complexity. In [44], Aneja et al. use implicit programming [45,
p. 297-300] which gives the possibility to evaluate systematically all solutions without the
necessity of evaluating all of them explicitly by fixing them.
An algorithm called Constrained Bellman-Ford (CBF) is introduced in [46]. The algorithm
has the capabilities to discover possible paths to a set of destination nodes while comply-
ing with the destination’s constraint. In contrast to it’s name, the algorithm is based on the
breadth-first search (BFS) search algorithm [31, p. 594-597]. The algorithm finds indepen-
dent minimum cost paths between one source and a set of destination nodes subject to
each destination’s delay constraint. As CBF returns a set of possible paths for each destina-
tion node, it can be used for the subsequent optimization. Another advantage is that paths
to multiple destinations are returned. In the case of unicast connections, in the case of for
example a server and multiple clients, it could relieve the burden of calculating the paths
for each client separately. Especially for multicast connections, the usage of CBF would be
beneficial.
Another approach to solve the MCSP problem is an algorithm called A*Prune [47], which
was developed by Liu and Ramakrishnan based on the A* (A-star) search [48]. A* relies on
a guess-function which defines the nodes chosen which are expected to lead to the goal as
fast as possibles. In A*Prune, it is assumed that a guess function can be adopted for all cost
and constraints, in other words the network metrics. It constructs a heap [31, p. 151-152],
so a data structure which also defines the priority of the data. From this, a priority queue can
be derived that is then used for path discovery. The constraint values are projected and if
they exceed their end-to-end bound, they are removed from the queue. After all, when the
destination node is reached, the MCSP is found. One major advantage of A*Prune is that it
finds MCSPs to other destination nodes on the way and the search can also be extended to
find even more complying paths to other nodes.
Other approaches are based on Genetic Algorithms, an approach inspired by nature to solve
complex optimization problems. In [49], a genetic algorithm is used for the basic routing
problem in networks. Ahn [50] and Hamed [51] are using this kind of algorithms for solv-
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ing the routing problem with constraints (i.e. CSP). For another kind of solutions, the Ant
Colonization Optimization method [52] is used. It is derived by the idea that a collection
of ants can find efficiently the shortest path to a source of food and then informing other
ants by the deposition of pheromones. This behaviour can be applied, as shown firstly by
Colomi in [53], for determining the shortest path in a network. An approach presented by
Di Caro [54] does apply the optimization based on the behaviour of ants to the routing in
packet switched networks. There are plenty of solutions to find the shortest path based on
Genetic Algorithms, Ant Colony Optimization or other optimization methods, but this would
be out of the scope of this work.
A good overview for unicast routing algorithms in Software-Defined Networkings delivers
[55]. However, QoS routing algorithms are commonly greedy, meaning that they attempt
to find a path that meets with the particular constraints, but ignoring the impact of their
decisions on the whole network.

2.5.2 Pre- and postcomputed

The state of the network depends on the flows and their required bandwidth. If a new flow
joins, the network does not have the knowledge how much bandwidth the flow wants to
obtain. It is also possible that traffic rates change over time depending on the user be-
haviour. Therefore it is beneficial to optimize the network with the metrics of its current
state. Several objectives are common to be chosen for the optimization. That includes Con-
gestion Minimization, End-to-End delay Minimization , Packet Loss Minimization, network
utility maximization or even Energy consumption Minimization [56].
In this work, the focus lays mainly on the congestion and End-to-End delay minimization.
To prevent Congestion, different techniques can be applied. One is that different streams
share the network resources by minimizing the utilization of the links by distributing the traf-
fic over the network and avoiding congestion. To achieve a higher accuracy, the traffic flows
could be split up on different paths.
In [57], Wang et al. calculate link weights for arbitrary flow splitting by using linear program-
ming. Another is to block the access to congested network resources (i.e. links or forwarding
devices). If a new demand is processed, congested resources are not taken into account for
the path selection. Congestion would mean a higher end-to–end delay (i.e. latency) and
packet losses. In other words, congestion minimization has a direct beneficial impact on the
other two objectives and can considered as an useful general objective. But it also has to
be noted that the distribution of the traffic can lead to higher latency, so depending on the
situation, it can end up in a trade-off. As a result, proposed approaches generally concen-
trate on one independent objective.
Wang et al. propose in [58] a linear programming formulation to prevent congestion by min-
imizing the maximum of link utilization. In [59], Trimintzios et al. formulate a the problem
in a way that they optimize for a lower delay and prevent overloading parts of the network
at the same time. Additionally, constraints on the hop count and packet losses have been
added to ensure meeting the QoS requirements.
Next to the solutions based on a multi-constrained problem formulation, others focus on
modelling the network with queuing theory [60][61]. Using queuing theory, the complexity
grows with the size of the network, therefore multi-hop and multi-point to multi-point net-
works are still open problems [9]. In addition, traffic is often assumed as a distribution, often
the Poisson distribution [10]. However, this does not always correspond with the reality in
complex networks such as the Internet where user demands and link usages are hard to
predict.
A detailed summary of the application of different approaches to solve TE problems can be
found in [21] and their application for SDN in [62].
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2.5.3 Industrial Applications

With a rising traffic requirements through video streams and cloud application led to an in-
creasing number of data centers of content providers distributed around the globe. These
datacenters are connected via separated WAN networks. These networks are usually ex-
pensive and the content provider, usually considerably large enterprise, tend to achieve a
high utilization for cost savings.
Jain and his colleagues at Google describe in [5] how they move away from costly overpro-
visioning, in their case 2-3 times the necessary bandwidth, to a near perfect utilization of
their backbone network B4. Their network can handle standard routing protocols and has
a TE application running on a SDN controller. It splits application flows up (i.e. Multipath
forwarding) and allocate these while balancing priority and demands of the different appli-
cation. An algorithm based on max-min fairness [63][64, p. 8], a model for the fair allocation
of network resources in which it is tried to maximize the minimum rates. But the algorithm
was extended to additionally satisfy the throughput demand of certain applications with pri-
oritization and it can dynamically relocate bandwidth if link failures occur. Their success by
achieving near 100% utilization in some links and the associated cost savings led to more
research attraction on OpenFlow and SDN [56]. Microsoft has similar as a content provider
similar to Google’s B4, a backbone network connecting his datacenters.
Therefore, Huang et al. developed a system, called SWAN [6], to improve the utilization de-
pending on the current traffic demand. It satisfies its set goals of max-min fairness and strict
priority classes for applications by coordinating the sending rates of its services and a ben-
eficial allocation of the data flows. It derives the flows into different classes and reserves
the shortest path always for the ones high priority. Flows with lower priorities can be dis-
aggregated (i.e. split up) or reallocated to achieve a high utilization. To prevent congestion
due to incoming demands or ongoing traffic allocation, the algorithm leaves a scratch space
(i.e. free space dedicated to temporal use) in each link. With the usage of their developed
algorithm, they achieved a 60% higher utilization.
Another content provider which delivers different types of media with the help of distributed
datacenters is Facebook. Edge Fabric [65] is an SDN-based system presented by Schlinker
et al. which manages the traffic between their points of presence, in other words their data-
centers. The main goal of Edge Fabric is to avoid congestion by monitoring the network state
and allocate the traffic on alternative paths. The strong interest of reputable companies in
this topic shows its relevance and the demand for a suitable solution.

2.5.4 Machine Learning

The algorithms and approaches described previously are on the one hand based on opti-
mization with constraints or on complicated models that scale poorly. Machine Learning
techniques have shown in previous publications and use cases that they can handle rela-
tively large optimization problems.
One common example especially for Reinforcement Learning is the mastering of different
games such as Go or Chess [66]. The special aspect is that they teach themselves the games,
so they are capable to play effectively without the development of an algorithm. In combina-
tion with deep neural networks (i.e. Deep Reinforcement Learning (DRL)), it can even handle
arcade games [67]. Other areas include autonomous driving [68], robotics [69] and the
financial sector [70]. Also classic control problems such as temperature regulation of facili-
ties [71] can be managed successfully. A comprehensive overview can be found in [72]. The
advantages of learning to behave effectively in an environment without requiring a model
suits well for the dynamic and complex behaviour of todays networks. In the following para-
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graph, approaches that use machine learning for routing or traffic engineering are intro-
duced.
An early occurrence of an application of machine learning for routing was the approach of
Boyan and Littman [38]. In their algorithm, called Q-routing, they use the Q-learning algo-
rithm, as introduced in section 2.4.3. A reinforcement learning module (i.e. a RL agent) is
implemented into each node of the network. Information and statistics about the delivery
times were gathered, stored locally in each node and used as a reward. By implementing
the Q-learning algorithm, each node estimates the delivery time in the number of hops of a
packet until it reaches its destination when sending it to a specific neighbor node. For evalua-
tion, a discrete network simulator which can forward one packet each timestep. The Q-tables
are predicting the delivery time, showing the similarities to the Bellman-Ford algorithm, that
also keeps a cost function in a table. In Q-routing, the Routing policy is characterized by the
Q-values stored in the Q-tables of each node in the network. For exploration, exploration
algorithms were not used intentionally because of their negative influence on the network
state by provoking congestion by forwarding packets randomly. Instead a method called
”full echo” was introduced. In this method, a node requests to its neighbors when it has to
make a forwarding decision. The neighbors then return a number that characterizes the
neighbors estimate of the time the packet would need reaching the destination. Using this
kind of information exchange shows clearly the similarities to the Bellman-Ford algorithm.
Their results indicate that an algorithm based on Q-learning performs equally well under
low load and even better than shortest path algorithms under high load.
Choi and Yeung in [73] or Peshkin and Savova in [74] provide further developments of Q-
routing to improve its performance under high and low load. The trade-off is the short time
of inefficiency when the agents learn the optimal behaviour, so how to forward packets in
the most beneficial way. One drawback is the usage of local information and the depen-
dence on integrity of the other nodes.
Global knowledge about the network metrics can gained by using an SDN controller. It fol-
lows a review over approaches to use the available monitoring and control capabilities for
more effective routing and Traffic Engineering.

Based on Supervised Learning

One strength of Machine Learning is its ability to predict possible future states using the
current information base. The approach by Azzouni el al. called Neuroute [19] uses this ad-
vantage in their framework for dynamic routing in SDN networks. The system is divided into
three parts, an estimator for the traffic matrix, a traffic matrix predictor and the so called
traffic routing unit. The estimator is based on OpenMeasure [75], which aims to retrieve
the current network state in an efficient way by learning to optimize the placement of the
measurement resources in the network. Based on the measurement, a neural network is
trained to save the computed paths. Doing so, routing configuration can be saved in a match
to the current network state.
A similar approach is presented in [76]. It introduces a supervised learning framework which
is trained with previously computed paths showing like Neuroute that neural networks are
capable to match routing decisions to network states. But the quality of a trained network
depends strongly on the variety of the input data and the presented solutions are not capa-
ble to learn the behaviour of an environment on their own.
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Based on Reinforcement Learning

Reinforcement Learning, on the other hand learns through interaction with the environment
and consequently does not require any dedicated training data. In [77], Hu and Chen added
to each network node a supervised reinforcement learning agent [78], which has the objec-
tive to balance the arriving traffic to prevent busy links. Supervised RL relates to the idea to
speed up the learning by adding an additional entity which influences the agent additionally
to the environment. As reward function, the distance to the destination in Hops and the
relative load in the next link is chosen. A RL approach is used by Chavula et al. in [79] to
optimize UbuntuNet, an education network in Africa. Each switch is seen as a state s with
each connected neighbour switch as next state s′. The reward is calculated from a function
of delay, capacity and number of flows between combinations of two switches. Additionally,
the system was tested using multiple paths per flow with the Q-values as splitting ratios. The
evaluation was not compared to other routing approaches and using the number of flows
as a parameter for the reward calculation is not practical.
Xu et al. propose in [80] a data driven approach based on Deep Reinforcement Learning.
As states, the performance parameters throughput and delay are chosen. The actions are
split rations of the flows per link. They optimize for network utility maximization in a combi-
nation with α-fairness [64, p. 13 - 17] that is another model of the fairness in a network in
which α is used as a trade-off between efficiency and fairness. Used for solving the problem,
a mathematical framework called Gurobi Optimizer5 were used. There are several things
to consider. The approach does not solve the optimization problem on its own and uses
mathematical programming for solving the network utility maximization problem. It takes
the task of mapping calculated solutions for the problem to specific network states. Ad-
ditionally, splitting paths can lead to better solutions, but a practical implementation like
e.g. Multipath TCP [81] can be complicated in real life scenarios. It delivers comprehensive
results in simulated environments, such as the used packet simulator ns-3 [82], but the im-
plementation would be more complicated in a real setup (i.e. hardware).
The focus of [83] lies on optimizing the routing for SDN networks in a multi-layer hierarchical
manner. It attempts to provide a solution for real networks such as the Internet, which are
divided into individual Autonomous Systems, as described in section 2.2.1. Therefore, the
control plane is divided into three different layers, one for the so called Super Controller,
followed by Domain Controllers which retrieve the network metrics by Slave Controller that
are placed in the third layer. Inside of a AS (i.e. Interdomain), the Domain Controller is re-
sponsible for the routing. If the communication takes place between or via different ASs,
the Super controller is consulted, which will decides about the global forwarding direction.
When a route for a new flow is demanded, the routing is calculated on a hop per hop basis.
Each switch is defined as a state. The forwarding decision, in other words to which neigh-
boring switch the packet should be sent, is defined as the action. For the action selection,
the softmax policy, as described in section 2.4.4, is used and SARSA as learning algorithm.
The reward function consists of different QoS aware functions: the packet loss, available
bandwidth, Queuing delay in the current switch and the summed up transmission delay (i.e.
the link latencies) till the destination. The influences of the individual components can be
weighted by varying factors. In the evaluation, the approach is compared to Q-routing [38],
which is very similar. Like Q-routing, the algorithm does not use all the knowledge available to
the controllers through the SDN architecture. Additionally, the forwarding packet per packet,
is not suitable to realistic networks. There is no guarantee that packets arrive in order, what
can result in a collapsing congestion window for TCP [84]. To compute the forwarding de-
cision for each packet could overload the switches and congestion if the switch-controller
response delay is included.

5Gurobi Optimizer, https://www.gurobi.com
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In [85], Al-Jawad et al. propose the RL-based framework LearnQoS. It attempts to learn a
policy that optimizes according to the QoS requirements. As the state, the current traffic
matrix is defined. The traffic in the links is measured by the SDN controller by requesting
the switches for statistical information. Additionally, information about the throughput of
the flows, the delay and packet losses are gathered. These metrics are then used to check
if the required bandwidth is met for the video streams, what also defines the reward. The
actions are defined as followed: the rates of best effort flows (i.e. the ones with the lowest
priority) can be increased or reduced, best effort flows can be rerouted or not executing any
change. Tabular Q-learning was selected as RL algorithm. For the evaluation, HTTP traffic
were classified as best effort and video traffic as prioritized. LearnQoS is evaluated in an
emulated network with the Floodlight controller against shortest path routing and shows
the potential of gaining stable throughput for prioritized flows by using RL based Traffic En-
gineering. In their action space, the rerouting is not specifically defined and as a result, it
can interfere again with other video streams. A simpler and common solution for prioritizing
traffic would be to classify traffic and prioritize it, for example by using Differentiated ser-
vices [86].
An interesting approach is AuTo [87] by Li et al. for traffic optimizing inner-datacenter net-
works. Even if it refers to a different use case than a WAN or inter-datacenter network like
Google’s B4, their work deals with a realistic problem that short lived flows often are already
gone before traffic optimizing decision could have been made. First the state space was
defined as a combination of all active and finished flows, the action was defined as their
queuing priority and the reward was calculated as a ratio of the average throughput of all
completed flows in two consecutive time steps and thus indicates how good a decision was
with regard to the overall performance. Using this system, the underlying problem was iden-
tified that the processing delay of existing frameworks for Deep Reinforcement Learning is
too high to satisfy data center related traffic. As solution, two different approaches have
been introduced in which the flows were categorized and queued in an effective way. An
assumption has been made, called big-switch, which means that the network is assumed to
be non-blocking, non-congested and suitable load balanced. As a result, in this work, routing
and traffic engineering is ignored and the focus lies on the scheduling of flows. The inter-
esting parts are that optimization of networks can be complicated especially in real ones
due to changing traffic patterns and short lived flows which can affect running optimization
schemes even if they are already gone.
In [88], Sun et al. proposed TIDE, a DRL-based routing system. It has the objective to deter-
mine the link weights of the network-graph under consideration of different QoS criterias.
The Floyd–Warshall algorithm [31, p. 693-699] is applied on this graph to determine the
shortest path. Yu et al. provide in [89] delivers a similar approach like TIDE with regard to
the determination of link weights and then applying a shortest path algorithm. In addition,
the survey of [90] describes the utilization of ML in networking. Especially for applying ML
methods to SDN, [91] and [92] provide a comprehensive survey.

2.6 Conclusion

The presented approaches focus on an efficient routing of traffic flows in networks. The effi-
ciency can be defined by different optimization goals and by the constraints which are given.
For example, the minimum latency or a maximum throughput, which should be achieved
without overloading the links in the network. Furthermore, it can be distinguished by the
point in time when the decisions have to be made. Some methods deal with routes of a
newly emerging connection, while others deal with the subsequent rerouting of flows to
achieve a specific optimization objective. The routing of flows based on the Shortest Path
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First paradigm, even with constraints such as CSP or MCSP do not take the influence of their
routing decision on the rest of the network into account. Especially flows which require a
large bandwidth can negatively influence the network. Traffic Engineering approaches are
based on solving complicated multi-constrained problem formulations or models which do
not scale well, often only focus on one optimization objective, and require additional engi-
neering efforts.
This is where machine learning methods come into play, which, in addition to their fore-
sighted character, are also capable of solving large optimization problems. However, the
presented ML approaches do not offer a complete solution for routing. Instead, they each
solve parts while at the same time disregarding certain other aspects of the whole problem.
For instance, Q-routing [38] does not use the global knowledge of an SDN controller and
additionally is not feasible for today’s networks speeds. Others, such as [80], assume the
arbitrary splitting of traffic, which is not feasible in reality. The approaches [88] and [89]
generate a weighted graph on which shortest path routing algorithms are performed. This
means that they still rely on classic routing algorithms and only modify their behaviour by
changing the graphs. This is due to the application of DRL methods such as Deep Determin-
istic Policy Gradient [93], which output continuous actions. For example AuTo [87] adds the
big switch assumption and therefore simplifies the network behaviour.
In short, the current approaches based on Machine Learning do not provide a complete
solution for routing or traffic engineering by unrealistic assumptions or restriction to partial
problems.
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3 Implementation

3.1 Overview

The objective of this work is to evaluate a data driven approach by the usage of Reinforce-
ment Learning (RL) to determine a effective routing policy. Reinforcement Learning is based
on a Markov decision process, which is based on a Markov Decision Process (MDP), which
consists of states S, actions A(s) and feedback of the environment, the reward signal r. In
the use case in this work, the environment is a Software-Defined Networking. It consists of
a controller entity and several switches under its authority. The switches forward packets,
which arrive sequentially (i.e. flows), on rules set by the controller. To define it as an op-
timization approach for the Multi-commodity non splittable flow problem, as described in
section 2.3), the controller should find the optimal combinations of flows that maximize a
specific metric, typically QoS criteria such as End-to-End delay (i.e. latency) or throughput.
In current networks, a low latency gets increasingly important for applications like in health
care, autonomous driving or industrial automation [94]. Therefore the main focus of this
work lies on the minimization of the end-to-end delay of the flows.

Controller

Learning Module

Path
Computing

Network
Monitoring

Change
Flows

Network
Metrics

Rerouting

Network
Metrics

Actions

Reward
Calculation

Flow
Combination

Action
Selection

Network

Topology
Detection

State

Figure 3.1: Overview of the implemented system with each of its components.
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First, the implementation of the agent is described. Containing the definition of the MDP
with its state space, action space and reward signal. To execute the agent’s actions or gain
a meaningful reward signal, an entity needs to carry out the actions or retrieve necessary
network metrics. This task is handled by the SDN-controller, which measures the network
metrics and translates the agent’s actions into feasible modifications of the network. The
composition of the controller module is described in the second part. To evaluate the be-
haviour and performance of the RL-agent, an emulated network is used, which is described
in the third part. Figure 3.1 gives an overview of the interaction of the individual components
within the overall system.

3.2 Reinforcement Learning

To create an effective agents, different design choices are necessary. As part of the Markov
Decision Process, a suitable definition of the states, actions and the reward needs to be
found. Additionally an effective way of maintaining sufficient exploration and using the
gained knowledge beneficially is required, as described in section 2.4.4.

3.2.1 Markov Decision Process

Designing a Markov Decision Process can be a challenging task and has a major influence on
the effectiveness. In particular, the definition of states S, actions A and rewards R needs to
be defined properly. The learning rate α and discount factor γ also influence the behaviour
of the agent.

State space

The state space should represent the condition of the current network on which the agent
decides how to act. As described in 2.3, the network consists of flows F between different
hosts. Depending on the topology, the flows can take different paths with specific switches
Sw in their way. It is defined as multi-commodity flow problem with non splittable flows, each
flow fhsrc ,hdst

can always only take one path.

< , [1, 2, 3] >𝑓ℎ1,ℎ3

< , [2, 3, 4] >𝑓ℎ2,ℎ4

2

1

3

4

h1

h2

h3

h4

< , [1, 2, 3] >𝑓ℎ1,ℎ3

< , [2, 1, 4] >𝑓ℎ2,ℎ4

< , [1, 4, 3] >𝑓ℎ1,ℎ3

< , [2, 1, 4] >𝑓ℎ2,ℎ4

< , [1, 4, 3] >𝑓ℎ1,ℎ3

< , [2, 3, 4] >𝑓ℎ2,ℎ4

1 2

3 4

Figure 3.2: Representation of possible flow constellations in a network with four switches
and two flows.

One state s is therefore defined as a combination of all tuples (i.e. an ordered pair) of flows
with their chosen path < fhsrc ,fdst

, [Swsrc, ..., Swdst] >. The state space S is defined as all com-
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binatorial options of flow to path tuples. Figure 3.2 shows an example that contains four
switches, four hosts and two flows. Each flow represents a one-directional transmission be-
tween two hosts. The blue one from host h1 to h3 and the magenta colored from h2 to h4.
In this example, the currently selected paths for each flow are marked as solid thicker lines.
On the right, all possible combinations are shown with the currently chosen one marked.
As it is a combinatorial problem, the number of states, so the cardinality |S| of the state
space S scale with F as a set of all flows and P(f ) as a set of all possible paths a flow f could
take:

|S| = ∏
f∈F
|P(f )| (3.2.1)

In the case of the example shown in our If in an assumption, both flows combined need
more bandwidth than the capacity of the link between switch Sw2 and Sw3, the constraint
2.3.2 would be broken and result in congestion.

Action space

The agent can interact with the environment through different actions. In finite MDPs, the
value (i.e. the expected return) of a specific action a in a state s is defined as q(s, a), with
its estimate Q(s, a). To influence the network, the possible actions that the agent can carry
out through the SDN controller are changing the paths of the flows. Thereby the flow ta-
bles of the switches are modified. The presented actions also result in a change of the state
transition probability as described in section 2.4.2. The state transitions end up being de-
terministic, meaning p(s′|s, a) = 1 . Two kinds of actions are considered, the direct change

and the one flow change. A direct change would give the agent the opportunity to go from
one state straight into another. For the previous example (figure 3.2), the possible actions
for each action mode are shown in figure 3.3. In the case of a direct change, the agent in
state 3 could change to all other states 1, 2 and 4.

< , [1, 4, 3] >𝑓ℎ1,ℎ3

< , [2, 3, 4] >𝑓ℎ2,ℎ4

< , [1, 4, 3] >𝑓ℎ1,ℎ3

< , [2, 3, 4] >𝑓ℎ2,ℎ4

< , [1, 2, 3] >𝑓ℎ1,ℎ3

< , [2, 1, 4] >𝑓ℎ2,ℎ4

< , [1, 2, 3] >𝑓ℎ1,ℎ3

< , [2, 3, 4] >𝑓ℎ2,ℎ4

< , [1, 4, 3] >𝑓ℎ1,ℎ3

< , [2, 1, 4] >𝑓ℎ2,ℎ4

< , [1, 2, 3] >𝑓ℎ1,ℎ3

< , [2, 1, 4] >𝑓ℎ2,ℎ4

< , [1, 4, 3] >𝑓ℎ1,ℎ3

< , [2, 1, 4] >𝑓ℎ2,ℎ4

< , [1, 2, 3] >𝑓ℎ1,ℎ3

< , [2, 3, 4] >𝑓ℎ2,ℎ4

443 3

221 1

Figure 3.3: Possible actions with direct change on the left and one flow change on the right.

If only one flow can be changed, as shown on the right, the agent could perform the tran-
sition from state 3 to states 1 and 2. The task of the agent is to find the combination of
flow to path mapping that optimizes the system to a particular target. Since it is a process
that does not end with reaching a pre-defined goal or terminal state, a no-transition action
NoTrans is introduced. This gives the agent the ability to remain in a state that was perceived
as optimal by the agent. As can be seen from the simple example in figure 3.3, both variants
scale differently in terms of the total amount of actions in each state |A(s)| and as a result
the number of possible Q-values for the whole system |Q|, for the tabular case the number
of Q-table entries. For the direct case, the number of actions for each state is the size of
the state space without the current one |S–s| plus the No-Transition action, so the size of the
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state space:

|A(s)| = |S–s| + 1 = |S| (3.2.2)
|Q| = |S|2 (3.2.3)

As a result, the total number of actions and with it the size of the Q-table, scales polynomial
depending on the state space. This increases the time it takes the agent to evaluate all
actions. To reduce the increase in the number of Q-values, the actions are limited to the
respective flows. The learning agent can change the path for each flow of the state space
p(f )s → p ∈ P(f )–s. In figure 3.3, the one flow change is shown on the right side. The number
of actions of each state A(s) depends on the number of possible paths for each flow:

|A(s)| = ∑
f∈F

(|P(f )| – 1) + 1 (3.2.4)

|Q| = |S| ∗ |A(s)| (3.2.5)

In addition to reducing the total number of Q-values, it also reduces the number of changes
in flows that would be necessary for a direct state change. This additionally reduces the
required number of flow table modifications.

Reward

To determine the approximated value Q(s, a) for the action a in a state s the reward r, in
other words the feedback signal of the environment as described in 3.2.1, is necessary. It
defines the optimization objective and could depend on one or various QoS parameters.
For the case of this work, the goal is to minimize the end-to-end delay (i.e. the latency)
between the hosts of each flow. The latency between the hosts is determined by the sum of
all measured latencies by the method described in 3.3.1 of all links in the currently selected
path. One option for reward calculation could be to simply perform an average of all values
d = 1

|F|
∑

f∈F d(f ). For gaining more fairness [95], so very high values for one or several flows
are prevented. To reduce the latency and gaining additionally fairness, the quadratic mean
is chosen:

D =
√√√√∑

f∈F
d(fi)2

|F| = √d(f1)2 + d(f2)2 + ... + d(f|F|)2
|F| . (3.2.6)

Latency is a cost function, so it is desirable to minimize it what stays in contrast to Reinforce-
ment Learning, which typically has the objective to maximize a specific metric. Therefore, the
reward is defined as the negated quadratic mean from equation 3.2.6:

r = –D = –

√∑
f∈F d(f )2

|F| . (3.2.7)

Therefore, the agent tries to minimize the latency by maximizing the reward. Another option
would have been to calculate the reward by creating the inverse of the delay function: r =
1/d, but it would result in a nonlinear dependency. To keep the dependency linear, a
possibility would be to select a upper limit, such as dup = 1000ms, to calculate the reward
on the difference to the upper limit r = dup – d. As a consequence, it would be necessary
to choose an appropriate value based on the topology, the location of the hosts and the
link latencies. This would mean more engineering effort and explicit knowledge about the
topology. One of the advantages of the developed system is that no previously collected
topology or latency information is necessary. As a result, the option of calculating the reward
as the negative delay 3.2.7 was chosen.
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Q-Table

As described in section 2.4.3, the Q-values (i.e. the quality of an action in a specific state) are
saved in a tabular way. Due to using negative rewards, calculating the Q-value by equation
2.4.17 results in negative Q-values. The maxa Q(st+1, a) operation is performed to estimate
the value in the next state by taking the highest Q-value. Generally, Q-values in the tables
are initialized with zeros. Therefore, the Q-learning algorithm would always take the initial
Q-values values of zero for the value estimation instead of the already calculated Q-values.
To prevent that not intended behaviour, the initial Q-values are set to negative infinity –inf .
Therefore, the non-selected values are not preferred by the arg maxa. Additionally, using a
negative reward and as a result negative Q-values, additionally affects the exploration.

Exploration - ε-greedy

As described in section 2.4.4, an action is selected greedily by an arg max with a probability
of 1 – ε. By changing the initialization to –inf , no values of zero are falsely preferred. It could
be argued that using initial Q-values of zero would lead to an enforced exploration, but it
was decided to not change the purpose of the strategy.

Exploration - Softmax

Exploration based on the softmax functions maps the Q-values Q(s, a) to action selection
probabilities. As described in 2.4.4, the temperature τ defines the degree of exploration.
As described before in section 3.2.1, a negative reward is selected what results in nega-
tive Q-values Q(s, a). Additionally, the Q-table is initialized with negative infinity –inf , what
makes a modification of the softmax exploration necessary, because using –inf would result
in
∑

b∈A(s) Q(s, b)/τ = 0 and therefore in a division by zero. The original behaviour of function
should be conserved and hence the softmax for negative values is defined as followed:

p(a|s) = exp [–1/(τQ(s, a))]∑
b∈A(s) exp [–1/(τQ(s, b))] . (3.2.8)

A higher temperature still leads to a stronger exploration and reasonable choice of the size
of the temperature depends on the expected Q-values. In figure 3.4, the probabilities of a
varying u in a set of Q-values [u, –200, –200] with different temperatures τ is displayed.
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Figure 3.4: Probability of choosing action u in a set of Q-values [u, –200, –200].

To design the RL system in the right way, an appropriate temperature parameter needs to
be selected depending on the expected Q-values. Figure 3.4 also demonstrates that even
with negative Q-values, the property of a growing exploratory character with increasing τ

remains legit.

Exploration - UCB

Using the Upper Confidence Bound exploration method as introduced in 2.4.4, the bonus b+

provides the enforced exploration. b+ depends on the count how often actions are selected
in a state in comparison to the state visits of the agent. With larger values for Q(s, a), the
weighting (i.e. influence) of the bonus b+ must also be increased. This can be achieved by
adjusting parameter c. The bonus has a similar effect with negative Q-values as with positive
ones.

Negative Rewards

Another option would have been to perform a minimization mina Q(st+1, a) to gain the ap-
proximate of the next state. That would also result in changes in the Q-table initialization
and the exploration methods. Initializing the table with zeros would also give the agent the
intention to estimate the future rewards on zero values. In the case of the ε-greedy method,
the arg max would have to be changed into an arg min. Additionally, the Softmax functions
would have to be modified. For UCB, the parameter c would have to be set negative, which
contradicts the definition of c > 0. The need for strong changes in exploration strategies
has also contributed to the decision for a negative reward ultimately.

3.2.2 Merging Q-Tables

The possible states S and actions A and thus the Q-table depend on the total flows regis-
tered. Then, the Q-table then expresses which actions ( i. e. which flow table changes ) lead
to the optimal state with the highest reward. If a new flow joins the network, the Q-table is
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no longer valid because the possible states as a combination of flows changed. As a logical
consequence, the Q-table would be reset, or in other words: reinitialized. Consequently, the
agent would have to start learning from the beginning. This is not very efficient and would
result in a long adaption period. Therefore the framework was extended by the feature of
merging the previous and new Q-tables. The action values Q(s, a) of the most similar previ-
ous combination are adopted to the new one. For the values of the action of rerouting the
newly joined flow, the initialization value is set. Figure 3.5 illustrates the merging operation.

Figure 3.5: Illustration of the merging operation.

This feature was implemented under the expectation of waiving the converging time by
merging in comparison of the complete relearning of the Q-table.

3.2.3 Initialization

If a new flow joins the network, the possible paths are calculated using a search algorithm
with their respective costs (e.g. the latency). There are two options to route the flow directly.
One is to select one path possible path randomly. This would ignore the available knowledge
about the topology. The second way is to use the shortest of the calculated paths to route
the flow. This initialization is the approach to route the flow in such a way that from the
beginning it is close to the optimal combination and thus the convergence time is shortened.
This allows to use the existing knowledge about the network metrics.

3.3 Controller

In the implemented system, the controller has two main responsibilities. It should monitor
the network and provide the data to the learning module for calculating the reward. Addi-
tionally, it executes the actions which are selected by the RL-agent. In this section, the design
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steps to implement the controller module are described.

3.3.1 Measuring the Latency

For obtaining the current latency in the network, an active measurement mechanism was
implemented. The approach is based on the idea of Phemius and Bouet [96] in which they
use probing packets to measure the delay between two switches.

Controller Co

Switch 𝑆𝑤1 Switch 𝑆𝑤2

𝐿𝑆 −𝑆𝑤1 𝑤2

𝐿𝑆 −𝑆𝑤2 𝑤1

𝐿𝑇 𝑅𝑇𝑇2𝑅𝑇𝑇1

Figure 3.6: Illustration of the latency measurement mechanism.

Figure 3.6 demonstrates the measurement with a simple topology of two switches. The
controller Co sends a probing package to a switch Sw1 with a PACKET OUT message and the
command to flood it out of all its ports. The measurement package is an Ethernet frame
with a value of 0x07c3 for the Ethernet-Type. This value is chosen arbitrary and is not in-
cluded in the registered numbers Ethernet-Types of the IEEE 802.3 standard. Using a spe-
cific number as Ethernet-type makes the packet clearly identifiable as a probing packet for
the controller. Additionally it contains a timestamp and the switch datapath identification
number as payload. The unique datapath ID is given to each switch by the controller when
they are connected to each other for the first time. Altogether, the size of the total packet
is the minimum packet size defined by the Ethernet standard, which is 64 byte. Figure 3.7
shows the composition of the packet .

ff:ff:ff:ff:ff:ff 00:00:00:00:00:01 0x07c3 202481592811290  1534343439.8381631

Destination Address Source Address Ethernet type Datapath ID Timestamp

Figure 3.7: Composition of the latency measurement packet.

After Sw1 sent out the packet, switch Sw2 receives the measurement packet. Sw2 does not
have any table entry for that specific Ethernet-Type and sends it as a PACKET IN message to
the controller Co. When the controller receives the message containing the probing packet,
it can derive the origin by the datapath ID. By the included timestamp and the arrival time,
Co can additionally determine how long the packet required to return. The total travel time
of the packet is defined as latency LT . As determining the one-way delay (i.e. latency) LSw1–Sw2
is the objective, it can be derived by subtracting the time the packet needs to be sent from
the controller Co to Sw1 and from Sw2 to Co, so LCo–Sw1 and LSw2–Co, respectively. Between
controller and switch, an uncongested link is assumed. This means that the link is symmetric,
so the delays are the same in both directions. So the end-to-end delay (i.e. the latency) can
be determined as half of the round-trip time RTT . The round-trip time is the length of time
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the packet needs to travel from a source to a destination plus the time an answer from the
destination needs to be received.

LSw–Co = LCo–Sw = RTT

2 (3.3.1)

This allows the calculation of the latency LSw1–Sw2 :

LSw1–Sw2 = LT – LCo–Sw1 – LSw2–Co = LT – RTT1
2 – RTT2

2 (3.3.2)

The one-way delay LSw2–Sw1 could be determined by the controller through sending the prob-
ing packet to switch Sw2 which then sends it out to Sw1, where it results in a PACKET IN mes-
sage. An advantage of sending the timestamp within the packet is that the controller does
not have to save the time when the packet is sent. If losses would occur in the link between
the switches and a packet would be lost, a timeout would be necessary. This would lead
to more orchestration and development effort. Additionally, if a link gets congested and
the measurement interval is smaller than the resulting link latency, wrong values would be
assumed if the newer timestamp would be chosen. The contained timestamp solves this
problem and for each probing packet, the necessary time to return to the controller can be
derived directly.
In a topology which has more than two switches, sending out the probing packets out of
every switches can derive a matrix that represents all latency values between the switches.
An example matrix for three interconnected switches would be:

L =
∣∣∣∣∣∣

0 LSw1–Sw2 LSw1–Sw3
LSw2–Sw1 0 LSw2–Sw3
LSw3–Sw1 LSw3–Sw2 0

∣∣∣∣∣∣ (3.3.3)

This matrix can be used as cost matrix for a weighted graph. Additionally, the actual topology
can be derived and combined in an unweighted graph. On the resulting graphs, search
algorithms can be performed and the path with the lowest cost, in the case of delay the
shortest path, can be found out.

3.3.2 Routing

In addition to tracking network metrics such as latency, the controller also has the task of
executing the agent’s actions. The actions are the initialization and modification of the paths
of the flows in the network.

OpenFlow Commands

In order to create a connection between the different hosts, the forwarding rules must be
configured to switches located on the path. The rules, which are saved in the flow tables, are
modified with the OFPT FLOW MOD message provided by the OpenFlow protocol1. Different
types of modification requests allow to add, change or delete flow table entries (via the
OFPFC ADD, OFPFC MODIFY or OFPFC DELETE key).

1OpenFlow Specification, opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
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Locating the hosts

Initially, the controller that controls the Layer 2 network does not have the information to
which switches hosts are connected. Only if one of the hosts wants to establish a connection
to another host, an Address Resolution Protocol (ARP) [97] request is sent. Since the host-
connected switch has no entry for the specific constellation of destination IP, source IP, and
ARP protocol type, the switch sends a PACKET IN message to the controller. The controller
also does not know which switch the host with the searched destination IP is connected to,
the ARP request flooded until an ARP response is received. If this occurs, the locations of the
hosts are found out, clearly identified by their Media Access Control (MAC) and IP -address,
and saved with the ports of the switch they are connected to.

Path search

As described in section 3.2.1, each flow has different possible paths and their combinations
define the state space S. To find out all possible paths for each flow, algorithm 3 based on
Depth-first search (DFS) [31, p. 603-610] is deployed. For each discovered vertex, a tree
is created and the path to this vertex is saved on a stack. When the destination node is
reached, a possible path is found. Using the previously created weighted graph, the costs
of each path can be determined. This allows to find the path with the lowest cost (i.e. the
shortest path). The ports that serve the links to other switches have been determined by

Algorithm 3 Path Search
1: function SearchingPaths(adjacencyMatrix, src, dst)
2: if src == dst then return src
3: paths = []
4: stack = [(src, [src])]
5: while stack do
6: (node, path) = stack.pop()
7: neighbors = adjacencyMatrix[node] . All neighbors of vertex
8: forwardNeighbors = SET(neighbors)-SET(path) .

Neighbors without origin path
9: for next in forwardNeighbors do

10: if next == dst then
11: paths.append(path + [next])
12: else
13: stack.append((next, path + [next]))
14: end if
15: end for
16: end while
17: end if
18: return paths
19: end function

the latency measurement. Then flow table entries are added for all switches on the route
via the OFPT FLOW MOD message with type OFPFC ADD.
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Reroute

The path search found different possible routes between two hosts. One path gets selected,
randomly or the one with the lowest cost, and the path is established by modifying the flow
table of the switches. As explained in section 3.2.1, the actions the RL agent can perform
are changing the paths of one (one flow change) or more flows (direct change). To change a
path to another one it is necessary to change the forwarding tables of the switches. Figure
3.8 shows this process in a topology with a branch. The connection between switch num-
ber 1 and 7 is changed from the previous connection via switches 3 and 4 (1-2-3-4-7) to a
connection via switches 5 and 6 (1-2-5-6-7).

Switch 1 Switch 2

Switch 3

Switch 5

Switch 7Host 1 Host 2

Switch 4

Switch 6

Figure 3.8: Process of changing a route in a specific topology.

The following commands need to be sent to the switches:
1. Adding flow table entries in switches 5 and 6.
2. In switch 2 the output-port of the existing flow is changed to the one of the link to

switch 5.
3. The flows of the specific connection in switch 3 and 4 are deleted.

It is important that the sequence is followed to ensure a continuous flow of packets without
interruptions. In the example shown in Figure 3.8, it is not necessary to change the flow
table in switch 1. Therefore, the rerouting procedure, shown in algorithm 4, was developed.
First, three lists are initialized, one for each of the three types of OFPT FLOW MOD, so one for
Add, Delete and Modification operations. Then it is iterated over the new path that should
be deployed. The first switch in the path, which is directly connected to the source host, is
not considered in the iteration. It is checked if the currently selected switch from the new
list is also in the old list. If this is the case, the system checks whether the previous switch
matches in the old and the new path. If not, the previous switch in the new list is set to the
modification list. In case the current switch is not in the old path, it will be placed on the Add
list and its predecessor on the FlowMod list. This is continued until the end of the new list is
reached. After that the procedure will be followed as defined previously. First the flow table
entries are added to the switches of the FlowAdd list. This has no effect on the switches
in the current path. Then the FlowMod list is processed from the back. Thus it is ensured
that there are no interruptions in the packet flow or that no paths lead to an unconfigured
switch. Finally the switches are determined in which flow table entries have to be deleted.
For this the difference between the set of the old switches and the new ones is determined.
Deleting the old flow entries is necessary to avoid complications when new flows are added
at the next rerouting.

3.3.3 OSPF

As a comparison to the proposed approach based on RL, routing is implemented using Open
Shortest Path First. OSPF computes the path between two nodes in which the sum of the
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Algorithm 4 Rerouting
1: procedure RouteDeployment(oldPath, newPath, flowID)
2: flowAddList← [ ] . Switches in which flow table entries are added
3: flowModList← [ ] . Switches in which flow table entries are modified
4: flowDelList← [ ] . Switches in which flow tables entrie are deleted
5: for index, switch in Enumerate(newPath) do
6: if switch in oldPath then
7: oldIndex← GetIndex(oldPath, switch)
8: if oldPath[oldIndex-1] == newPath[index-1] then . If same previous switch
9: continue

10: else
11: if newPath[index-1] not in flowAddList then
12: flowModList ← flowModList + newPath[index – 1]
13: end if
14: end if
15: else
16: flowAddList ← flowAddList + switch

17: if newPath[index-1] not in flowAddList then
18: flowModList ← flowModList + newPath[index – 1]
19: end if
20: end if
21: end for
22: for switch in flowAddList do . Adding flow table entries
23: followingSwitch← newPath[getIndex(newPath, switch) + 1]
24: addFlowSwitch(switch, flowID, followingSwitch)
25: end for
26: for switch in reversed(flowModList) do . Modify flow table entries
27: followingSwitch← newPath[getIndex(newPath, switch) + 1]
28: modFlowSwitch(switch, flowID, followingSwitch)
29: end for
30: flowDelList ← SetDifference(oldPath, newPath)
31: for switch in flowDelList do . Delete flow table entries
32: delFlowSwitch(switch, flowID)
33: end for
34: end procedure

weights of the constituent edges is minimized. The link weights or costs in this case are the
one way delays between the nodes. For this the one way delays are measured in the first
timestep and a graph, which represents the existing latencies in the links, is generated. The
graph is used to determine the shortest path when a new datastream between two hosts is
added to the network.

3.4 Practical Implementation

For the controller implementation, Ryu was chosen as a framework because it offers exten-
sive documentation and supports OpenFlow. Ryu is written in the programming language
python and so the rest of the programs were also developed using python. As described in
section 3.1, the implementation is divided in two modules, the learning module and the con-
troller. The controller is responsible for collecting the measured values and executing the
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actions given by the learning module. For the latency measurement, as described in section
3.3.1, the point in time at which the packet returns to the switch is measured. Since latency
values are in the millisecond range, it is important that these measurements are accurate.
Therefore, the measurements should not be disturbed by other parts of the implemen-
tation, in this case the learning module. Ryu has a threading module ryu.lib.hub, which is
basically a wrapper of eventlet, a lightweight threading library. Unfortunately in python it is
not possible to do multithreading (via system threads) because of the so-called global inter-
preter lock. The global interpreter lock should make sure that shared data structures are
accessed by only one thread at a time for avoiding race conditions. A solution to divide the
processes also on system level is the application of the python multiprocessing2 library. It
allows spawning processes and can therefore effectively bypass the global interpreter lock.
This also allows the use of multiple processors. To ensure that the measurements are not
blocked by the learning module, they are divided into different processes. When the con-
troller is launched, it also starts the process for the learning module. Since the learning
module requires the measured current metrics of the network and the actions selected by
the agent must be transmitted to the controller for execution, communication between the
individual processes is necessary. The multiproccessing library offers a pipe function for the
exchange of information between two processes. The function provides two connection ob-
jects which represent the two ends of the pipe. Each side has a receive and send function
with which the data can be exchanged in the form of objects. Figure 3.9 shows the structure
schematically.
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Figure 3.9: Flowchart of the controller and learning module.

2python, docs.python.org/3.5/library/multiprocessing
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The metrics are transmitted to the learning module in the form of a matrix, which can then
determine the current latencies for the paths. The one-way delays (i.e. latencies) are deter-
mined by the active measurement system described in section 3.3.1. The probing packets
are transmitted in fixed intervals and the matrix is updated when measurement packets are
returned by the PACKET IN MESSAGE. In addition, a time Twait is waited before the measure-
ments are recognized as valid. This is necessary to ensure that the system has settled to the
desired state. This will be discussed in more detail in the following sections. After the waiting
interval Twait , it is checked whether all latencies were successfully measured. It can happen
that measurement packets are dropped in a congested (i.e. full) queue. Due to the packet
loss, the measurement may not be performed. Therefore after elapse of Twait the controller
additionally waits for all measurements for the links. When the latency matrix has been filled
with valid measurements, the matrix is transmitted to the learning module via the pipe. The
agent then determines the next action to find the optimal state and, if necessary, to stay
in it. For the actions, the learning module transmits the paths to be changed to the con-
troller. Depending on the type of action, i.e. one flow change or the direct change between
the states, it can be one or more changes. The actions are processed by the controller and
executed by the rerouting as described in 3.3.2.
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4 Measurements & Evaluation

4.1 Topologies & System

For evaluation, a network is emulated with Mininet [98], a tool which allows the creation of
prototypes of large networks. It allows flexible and scalable emulation of switches, hosts,
controllers and the links in between. Additionally, Mininet supports the creation of Open-
Flow switches with the same scheme as a hardware switch. Hosts are emulated by network
namespaces, which allow the execution of processes. In summary, Mininet gives the possi-
bility to easily create realistic prototypes of networks containing OpenFlow switches. In ad-
dition, it is possible to create customized networks. For example, bandwidths of links can be
limited and other network parameters such as packet losses or delays can be added. For this
purpose, Mininet uses the Linux tool TC (Traffic Control) [99]. TC creates a queue in which
the data packets are processed with the so-called queuing discipline (qdisc). The queuing
rules used by the TC module to implement the flow control functions can be divided into two
categories, the classless and classful queuing disciplines. The classless queuing discipline is
relatively simple. Packets are all treated the same and no classification or prioritization takes
place. On the other hand, the classful queuing discipline divides the packets into different
classes with filters. The rescheduling, delaying or discarding then takes place within a class,
meaning that packets are not treated equally. In the evaluation network an equal treatment
of the packets is desired. The probing packets should experience the same delay as the data
packets in the links. Thus the probing packets can recognize congestion. Therefore a class-
less queuing discipline called Token Bucket Filter (TBF) is used. The queuing algorithm works
by outputting so-called tokens according to the desired data rate. The packets are collected
in the queue and the tokens are given to the packets. The packets need, depending on their
size, a certain number of tokens to pass the network. When a queue is full, the packets are
dropped (i.e. discarded). This can lead to packet loss in the flows, but also measurement
packets can be dropped. TBF is a pure shaper and does not reschedule packages. Meaning
that TBF has the capabilities to limit the bandwidth, but not adding specific delay. Therefore,
additionally NetEm, the Linux Network Emulator Module is used to add the desired delay
for a link.

4.1.1 Scenarios

For the evaluation, a simple and understandable topology, shown in figure 4.1, is introduced.
The network consists of four switches. A connection between the switches Sw1 and Sw4 can
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take place via two paths over Sw2 and Sw3 respectively. Three hosts h11, h12 and h13 are
connected to switch Sw1 and hosts h41, h42 and h43 are connected to switch Sw4.

𝑆𝑤3

𝑆𝑤4𝑆𝑤1

𝑆𝑤2

10𝑚𝑠, 3
𝑀𝑏𝑖𝑡

𝑠

14𝑚𝑠, 4
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𝑠
1, 75

𝑀𝑏𝑖𝑡

𝑠

2, 75
𝑀𝑏𝑖𝑡

𝑠

Links: Flows:

Figure 4.1: Topology containing four switches and three flows.

A latency of 10ms and a maximum bandwidth of 3Mbit/s are added to the links between Sw1
and Sw2 or Sw2 and Sw4. For links between Sw1 and Sw3 as well as Sw3 and Sw4, a delay
of 14ms is added and the bandwidth limit is 4Mbit/s. For the experiments, connections are
established between the hosts attached to Sw1 and Sw4. For this purpose iperf [100] is used,
a tool to perform performance measurements in networks. It offers the ability to generate
data streams between different hosts. In the scope of this test setup UDP data streams
are created. The added traffic streams (i.e. flows) and their set rates are as follows: fh11,h41
with a rate of 2.75Mbit/s and fh12,h42 respectively fh13,h43 with 1.75Mbit/s. The total capacity
between Sw1 and Sw4 is unidirectional 7 Mbit/s and the only possible routing without causing
congestion would be to route flow fh11,h41 over the path Sw1-Sw2-Sw4 and the remaining
flows over Sw1-Sw3-Sw4. The bandwidths of the flows were selected lower than the capacity
of the links, because it should be possible for the queues to empty when changing states.
Otherwise the optimal state would not be recognized as optimal. Assuming the flows are in
the optimal state, the expected average latency d is 22.67ms

Joining flows

To evaluate the behaviour of the system on a joining flow, another scenario is tested. For
this, two of the three flows are randomly selected from the set F = {fh11,h41, fh12,h42, fh13,h43}
which are present from the start. In the following time, the system learns to route the two
flows optimally. After the learning period, the third flow (i.e. the previously not selected flow)
is added to the network. When a flow is added, it can either be routed by randomly selecting
a path or by routing via the shortest path previously determined by the path search (see sec-
tion 3.2.3). Additionally, the state space changes and therefore the Q-table. It can be decided
whether the Q-table should be merged or reinitialized. These two features were introduced
in sections 3.2.2 and 3.2.3. All combinations of initial routing and Q-table initialization are
tested.
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Changed link bandwidth

In order to test the influence of the link bandwidths, the previously introduced setup is
modified. The bandwidths are reassigned as follows: C(lSw1,Sw2) = C(lSw2,Sw4 ) = 4Mbit/s and
C(lSw1,Sw3 ) = C(lSw3,Sw4 ) = 3Mbit/s. Thus the total capacity of the network between Sw1 and
Sw4 remains the same. Also the added latencies for the links are not changed and remain
the same dSw1,Sw2 = dSw2,Sw4 = 10ms and dSw1,Sw3 = dSw3,Sw4 = 14ms. An illustration of this
scenario can be found in figure 5.1 in the appendix.

Scalability

To test the scalability of the approach, another test setup is introduced. Therefore, the
connection between a source switch SwS and a destination switch SwD can take place over
m different paths via intermediate switches Sw1...Swm. To each of SwS and SwD, a number
of m hosts hS1...hSm and hD1...hDm are connected. These hosts create m unidirectional flows
between each other. Link capacities for each path range from 2Mbit/s to m · 2Mbit/s and
flow bandwidths from 1.75Mbit/s to (2m – 0.25)Mbit/s. This setup ensures that only one
uncongested state exists. m defines the number of possible paths and number of flows
in one direction at the same time. The total number of action values |Q| in relation of the
scalability level m with one flow change can be determined as follows:

|Q| = |S| · (|F| · (|P(f )| – 1) + 1
)

= m
m ·
(
m · (m – 1) + 1

) = m
m · (m2 – m + 1) (4.1.1)

An illustration 5.6 of the topology can be found in the appendix.

4.1.2 Queue Sizing and Learning Steps

The system should be able to recognize how to optimally set the paths to generate the lowest
possible latency for all flows and prevent congestion. Congestion is caused by exceeding the
capacity of a link and is reflected by the accumulation of packets in the queue. The size of
the data in the queue can be calculated by multiplying the number of packets by their size.
In the case of iperf, the default payload of the generated packets is 1470 bytes. Together
with the IP- (20 bytes), UDP- (8 bytes) and Ethernet header (14 bytes), this results in a total
packet size of kUDP = 1512byte. As explained in section 3.4, after each state change the RL
system is assumed to be in a steady state after time Twait . It should be possible for all queues
to be filled or emptied during this time. In the case that the flow fh11,h41 with a bandwidth
of b

fh11,h41 = 2.75Mbit/s is present in a link lSw1,Sw2 with C(lSw1,Sw2 ) = 3Mbit/s, the difference is
bdiff = C(lSw1,Sw2 ) – b

fh11,h41 = 0.25Mbit/s. For a waiting time Twait = 2s and a packet size of
kUDP = 1512byte , this would mean that packets can flow out of the queue with the rate:

rempty = bdiff

kUDP

= 0.25Mbit

s

1512byte · 8 bit

byte

= 21.67Hz. (4.1.2)

The queue length should be sufficiently high to make congestion measurable and at the
same time small enough to not wait too long after the state transitions to empty the queues.
Therefore the queue length is set to K = 30 packets and the queue can be unloaded in:

Tempty = K

rempty

= 30
21.67s–1 = 1.38s. (4.1.3)
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If the queue is full, packets are dropped independently to their origin. This can also cause
the measurement packets to be dropped. The probability for a packet to be dropped when
it arrives in a congested (i.e. full) queue with limited size can be calculated by

p(dropped) = {1 – C(l)
bf (l) if bf (l) > C(l)

0, otherwise
(4.1.4)

Before the SDN controller forwards the measured latencies to the RL module, the controller
waits for them to be valid. Thus the number of the decisions of the RL agent, called learning

steps, might not equal the total measuring time Tmeas divided by Twait .
The delay caused by the congested queue can be determined by

Tdelay = kUDP · K
C(l) (4.1.5)

For the case of a queue length K = 30 and a C(l) = 3Mbit/s , the caused delay is

Tdelay(K = 30, C(l) = 3Mbit

s
) = (1512byte · 8 bit

byte
) · 30

3Mbit

s

= 115.54ms (4.1.6)

This results in an expected delay of approximated (2 · 10 + 116)ms from the connection of
Sw1 – Sw2 – Sw4.

4.1.3 Load Level and Average Latency

To perform measurements at different loads in the network, the term load level LL is in-
troduced. It represents a scaling factor for the bandwidth during maximum load on the
network.

b
f (LL) = LL · bf , LL ≥ 0 (4.1.7)

If the load level is changed, the bandwidths of the flows in the network are modified ac-
cordingly. For the previously introduced topology containing four switches and six hosts,
for the flow between h11 and h41 with a load level of 40%, the new rate bfh11,h41 (0.4) =
0.4 · 2.75Mbit/s = 1.1Mbit/s would result.
As described in section 3.2.1, the reward is calculated using the quadratic mean. To make
the measurements easier to understand, the average one-way-delay d over all flows is used
for the plots instead.

d = 1
|F|
∑
f∈F

d(f ) (4.1.8)

4.1.4 Convergence Criterion

To evaluate the time until convergence and average flow latency as performance metrics
quantitatively, a convergence criterion needs to be introduced. To the best of our knowl-
edge, there is no common definition for convergence in Reinforcement Learning. Therefore
a convergence criterion based on a threshold ε is introduced. The moving averages of the
measurements are regarded. At the end of a measurement the system, and therefore also
the last measured value, is considered converged. Starting from the back, all values that
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are closer to a convergence limit than a threshold ε are also called converged. ε is defined
relative to the last measurement value. Convergence time tc is the smallest time with the
corresponding value of the average latency of all flows d(tc), where there is a convergence
limit dc, so that equation 4.1.9 is true for all t > tc.

|d(t) – dc| < ε (4.1.9)

Figure 5.2 in the appendix shows the calculated convergence time for the average of d for an
example measurement with one flow change, Q-learning and softmax exploration method.

4.1.5 Latency Measurement

As described in section 3.3.1, an active measurement of the latency is carried out by using
probing packets. The method is based on the idea of Phemius and Bouet, who describe in
[96] an varying offset of the measured latency in comparison to measurements when using
the ping utility, which delivers accurate measurements. They also used Mininet for their
evaluation and found out that the moving average of the offset stays constant over time
and sinks with a higher computing power of the host machines. Therefore, Phemius and
Bouet relate the offset mainly to processing delay of the controller.

4.1.6 Evaluation Setup

As previously described in section 3.4, a time Twait is waited after each state change until
reaching a stationary state. Due to the realism achieved by Mininet, measurements with
multiple iterations take correspondingly longer, ranging from hours to days. Running multi-
ple instances of Mininet and ryu can lead to problems, for example by using the same ports
or interface names. One possibility would be using additional hardware, in other words,
additional working stations. However, these should have the same hardware and software
configurations to ensure the credibility of the measured latency values. Since there was
not enough hardware available and the effort of installing and maintaining the same Linux
distributions would be high, virtualization was chosen. VirtualBox was not an option as the
measured latency values fluctuated strongly. Therefore Linux KVM (Kernel-based Virtual
Machine) [101] was selected, which offers better performance than VirtualBox [102].
KVM is built into Linux and allows the kernel to act as a hypervisor, so the host system can
start and manage multiple virtual machines.

Listing 4.1: Default configuration
config.vm.provider :libvirt do —libvirt—

libvirt.driver = ”kvm”
libvirt.cpus = 2
libvirt.cpu˙mode = ”host-passthrough”
libvirt.memory = 4096

end

As a management tool for the platform virtualization, libvirt1 was used. Vagrant2 was used
as a management platform for the virtual machines. Through Vagrant it is possible to config-
ure virtual machines through a file, the so called Vagrantfile. In listing 4.1 the configuration

1Libvirt, libvirt.org
2Vagrant, vagrantup.com/docs
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for the provided resources is shown. Each of the virtual machines is provided with four giga-
bytes of RAM and two CPUs. By the setting ”host-passthrough”, libvirt instructs KVM to pass
the host CPU without modifications3. This provides a better performance, and can be im-
portant to some applications that check low level CPU details. As operating system, Debian
with kernel version 4.19.67-2 was used. The hostsystem on which the Virtual machines are
deployed is defined in table 4.1.6.

Component Specification
Operation System Ubuntu 18.04 LTS
Kernel 4.15.0-43
CPU Intel Xeon W-2155 @ 20x 4.5GHz
RAM 128 GB

Table 4.1: Host system configuration

The system has 10 physical cores that result in 20 threads, meaning the number of parallel
executable instructions. Therefore a total number of 9 virtual machines were started on the
host with two threads remaining for the host’s operation system.

4.2 Measurements

In order to evaluate the system with its implemented functions and parameters, it is tested
in different scenarios regarding convergence time and the latency after convergence. First,
the different action types, i.e. one flow change and direct change as introduced in 3.2.1,
are compared with each other. Then, the On-Policy algorithm SARSA is compared to the
Off-Policy algorithm Q-learning. This is followed by the influence of the different exploration
strategies ε-greedy, softmax and UCB varying their different parameters. These are com-
pared based on their convergence time and latency after convergence. Then, the behavior
in case of a change of the network load is tested. The RL approach is compared with SPF.
Next, the approach of merging Q-tables, i.e. as described in section 3.2.2, is tested. Subse-
quently, the initialization of a path with SPF is tested. Finally, measurements are performed
over an increasing number of flows and switches. This evaluates the scalability of the ap-
proach. Before the evaluation of the exploration strategies, the softmax exploration method
with τ = 5 · 10–5 was used to test the different action styles and learning algorithms. The
learning rate α and discount factor γ were set to 0.8. Unless not stated otherwise, each
measurement was conducted 30 times.

4.2.1 Action types

Two possibilities for the execution of the actions were presented in section 3.2.1. The first,
called one flow change, means that up to one flow can be rerouted with each action. The
second approach is the direct change between states, so the rerouting of multiple flows.
Figure 4.2 shows the average latency d of all three flows fh11,h41 , fh12,h42 and fh13,h43 over steps
of the learning process. The line represents the average of all iterations. The shading in the
background represents the 5% and 95% percentile respectively.

3Libvirt configurations, libvirt.org/formatdomain.html
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Figure 4.2: Average latency d over steps for different action types.

As can be seen in the graph, d decreases faster when using one flow change. This is due to
the fact that the number of possible actions per state, and thus also the number of action-
values |Q|, is higher in case of the direct change. As a result, the agent has to explore more
actions before the NoTrans action in the optimal state can be found. Figure 4.3 shows the
time the system needs to converge and the average latency after converging for each of
the methods in form of a boxplot. The box extends from the lower to the upper percentile
values with a line demonstrating the median. The whiskers show the range of the data.
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Figure 4.3: Performance over time steps for the different action types.

The method used to detect convergence is described in section 4.1.1. The threshold relative
to the last measured value d(Tmeas) was set to ε = 0.05 · d(Tmeas). The convergence criterion
is applied for each iteration and the values following d(tc) are taken as average latency after
the convergence. Due to the faster convergence the one flow change approach is chosen
for the further measurements.

4.2.2 On- or Off-Policy

The methods presented in section 2.4.3 for estimating the Q-value Q(s,a) are SARSA and
Q-learning. As a reminder, SARSA follows the behaviour policy π, in this case ε-greedy, to
estimate the value of the next state. In other words, the Q-value selected by π is used for
the calculation of Q(s, a) and the amelioration of π. In contrast, Q-learning uses the highest
value arg maxa Q(st+1, a) of the following state for the estimation. The two approaches are
compared directly to each other in figure 4.4.
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Figure 4.4: Comparison of the performance of SARSA and Q-learning.

The plot shows that the two algorithms do not differ significantly in their performance in
terms of necessary steps for convergence. In terms of the average latency d after conver-
gence, Q-learning performs better and is therefore chosen for the rest of this work.

4.2.3 Exploration strategies

The different exploration strategies, as described in section 2.4.4, are compared now. First,
the individual parameters of the ε-greedy, softmax and UCB methods are varied. Then the
individual strategies applying the best performing exploration parameter are compared.

ε-greedy

Using the ε-greedy method as a policy means that the agent takes a random action with a
probability ε and otherwise the action with the highest action-value Q(s, a). In figure 4.5, the
convergence times and the resulting average latency d after convergence are compared for
different values of ε.
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Figure 4.5: Performance of the ε-greedy algorithm in terms of convergence time and follow-
ing latency regarding for different values of ε.

Due to its random nature the ε-greedy method is not able to converge. Sooner or later non-
beneficial actions will be chosen, depending on exploration factor ε. As all measurements
are considered converged by the end, the last bad action was longer ago for small ε, so the
convergence appears to be earlier. Figure 5.4 in the appendix shows d over timesteps with
different values for ε.

Softmax

Softmax provides the opportunity to map the Q-values Q(s, a) to probabilities. As described
in section 3.2.1, a negative reward is used which leads to negative Q(s, a). To handle the neg-
ative values as well as negative infinity – inf, the softmax function was modified, as explained
in section 3.2.1. In addition to the adjustment of the softmax function, the values for the
temperature τ have to be selected appropriately. The creation of a graph that shows the se-
lection probabilities in relation to the Q-values, such as section 3.4, provides orientation with
the knowledge of the expected Q-values Q(s, a) in the table. As mentioned before, because
of the modified softmax function, it is possible to use initialization values of –inf . Unfortu-
nately, no value could be found for τ which provides sufficient exploration for Q-values near
–inf and can effectively distinguish between values closer to zero. Due to the idea that con-
vergence can be accelerated by selecting optimistic initialization values for the Q-table, as
Sutton described in [1, p. 34 -35], a finite initialization value was therefore chosen.
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Figure 4.6: Performance of the softmax exploration with a varying τ.

In the case of a measured maximum latency of 28ms, an initialization value of –140 is as-
sumed. The value was determined by assuming that the learning agent finds the optimal
state and selects the NoTrans action endlessly. When applying the Q-learning algorithm,
the Q-values converge over time to a value, which is around –140 for a reward r = –28.
Figure 5.8 in the appendix shows the curve of the resulting Q-values over time for different
continuously received rewards. In graph 4.6 the convergence time for different values of
the temperature τ is shown. For τ = 0.0005 = 5 · 10–5, the values for the average latency of
all flows and the convergence time are determined as the most promising. Therefore this
value is chosen for the temperature for the following measurements. Figure 5.5 shows the
average latency over the time steps with varying τ.

UCB

Upper Confidence Bound is based on the idea to prioritize actions that have not been se-
lected previously. Therefore the bonus b+ was introduced, which can be weighted by the
degree of exploration c. Figure 4.7 shows the performance of UCB varying the parameter c.
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Figure 4.7: Performance of the UCB exploration strategy with different values for c.

The graph shows clearly the influence of c. A high exploration is necessary to find the global
optimum, but higher values result in longer convergence times and higher regrets. There-
fore a trade-off has to be made. Graph 4.7 shows that a medium value of c = 30 achieves
the best overall results.

4.2.4 Recapitulation

In the previous sections, the different action types, learning algorithms and exploration
methods were compared. As best performing action type and learning algorithm respec-
tively one flow change and Q-learning were used for later measurements. For the explo-
ration method several options remain. The epsilon greedy method has not been found to
be a suitable method for efficient exploration. For softmax the temperature of τ = 5 · 10–5

and for UCB c = 30, is selected.
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Figure 4.8: Comparison of the performance of softmax with the temperature of τ = 5 · 10–5

and UCB with c = 30.

The direct comparison in figure 4.8 demonstrates that softmax delivers the best perfor-
mance, in regard to convergence time and regret. Therefore, the following configurations
as shown in table 4.2.4 are chosen for the next measurements:

Configuration Selection
Action Type One Flow
Learning Algorithm Q-learning
Exploration Method Softmax
Tau 10–5

Table 4.2: Configuration of the RL framework.

For the tests, the values were passed to the system via a configuration file, which can be
found in the appendix in listing 5.1.

4.2.5 Load Change

In order to investigate how the RL approach behaves in a dynamic environment, the load
of the network is changed. In figure 4.9, the system based on RL, with the two different
exploration methods softmax and UCB, are directly compared to OSPF routing, as described
in section 2.2.3. For softmax, the temperature was set to τ = 5 · 10–5 and for UCB an
exploration degree of c = 30 was defined. For OSPF, latency is selected as the cost function
and the path Sw1 – Sw2 – Sw4 was determined by the shortest path algorithm and the three
flows fh11,h41 , fh12,h42 , fh13,h43 were routed over this path. First a load level of LL = 40% is set, i.e.
all flows can be routed over the shortest path without causing congestion. After 200 steps,
the load level is increased to LL = 100%, the average latency d for the OSPF routing method
spikes.
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This behavior is due to the congestion in link lSw1,Sw2 and the resulting full queue. A load level
of 100% results in an accumulated bandwidth of 6.25Mbit/s for all three flows which flow
into link lSw1,Sw2 that only has a bandwidth of 3Mbit/s. This leads to a bandwidth difference
of bdiff = –3.25Mbit/s and therefore in a congested state. In addition to the spike, which
is caused by the quickly filled queue of the link between Sw1 and Sw2, the average latency
continuous to rise. The traffic rate arriving at switch Sw2 and forwarded to Sw4 through
lSw2,Sw4 corresponds to the previously limited rate of 3Mbit/s. This means that the queue
of the Sw2-Sw4 connection is at its upper limit with a bandwidth limitation of 3Mbit/s. In
addition, the measurement packets are sent out once per second with a packet size of 64
byte (i.e. 512 bit). This results in a growing queue for the link lSw2,Sw4 up to the configured
length of K = 30 and as a consequence an increasing delay. For some measurements,
the latency suddenly dropped due to unpredictable behaviour of linux traffic control. It was
observed that without foreseeable reason, queues were emptied during the measurements.
Therefore, the latency shows stronger variations over time in protracted congested cases.
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Figure 4.9: Average latency d over steps with a load change after 200 steps.

On contrary to SPF, after a short adaption period, both RL solutions converge to an uncon-
gested state resulting in a lower d. The agent recognizes the changing load at time step 200
through receiving a lower reward and resulting lower Q-values which in turn encourages
exploration. When he finds the state with the lowest latency, he remains in it except for
actions that serve further exploration (i.e. the regret). From graph 4.10, it can be derived
that softmax has a lower convergence time than UCB.
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Figure 4.10: Comparison of the convergence time and the regret after the load change for
UCB (c = 30) and softmax τ = 5 · 10–5.

This clearly shows the advantage of a system which dynamically adapts based on the current
state of the network. Reinforcement Learning makes this possible by using the feedback the
agent receives from the environment through the reward.

4.2.6 Load Levels

Next, the performance of the implemented solution compared to routing based on OSPF
is examined as a function of the load level in figure 4.11. In this case, the measurement
consists of 20 iterations. The plot shows the average flow latencies with its corresponding
5% and 95% percentiles as whiskers of 30 iterations. OSPF uses the shortest path deter-
mined by the constructed weighted graph. As before, the flows are routed over the path
with the lowest overall latency, Sw1-Sw2-Sw4. The RL solution shows slightly higher aver-
age values than SPF on a low network load due to the continued exploration. With a link
bandwidth between Sw1-Sw2 of 3Mbit/s and with a cumulative bandwidth of all flows of
btotal(lSw1,Sw2 ) = ∑

f
bf (lSw1,Sw2 ) = 6.25Mbit/s under 100% load, congestion occurs on a load

level of LLcongested = (3Mbit/s) /
(
btotal(lSw1,Sw2 )

) = 0.46 = 46%. As a result, SPF routing shows
a recognizably higher average latency of all flows d starting at the measurement point of
LL = 50%. RL-based routing, on the other hand, adapts to the change in the load and can
thus successfully prevent congestion.

55



40 60 80 100 120

load level (%)

25

50

75

100

125

150

175

av
er

ag
e

la
te

n
cy

(m
s)

SPF

Q Learning

Figure 4.11: Average Latency d after convergence of the softmax exploration with τ = 5·10–5

and SPF depending on load level LL.

What can be recognized additionally in graph 4.11 is the fact that the average latency for
the RL approach still gives better results than SPF routing with load levels above 100%, in
which no uncongested state is possible anymore. This is because the latencies of all flows
were included in the reward calculation. Therefore the agent learns to route as many flows
as possible over a path in which they do not cause congestion. As described in 4.1.1, the
traffic rates of all flows were set in a way that the queues could be emptied within Twait and
a stationary state could be reached. At a load level of 110%, the flows fh12,h42 and fh13,h43
would have a bandwidth of 1.925Mbit/s. These two flows could be routed over the con-
nection Sw1 – Sw3 – Sw4 without causing congestion. However, due to a smaller bdiff , the
unloading time Tempty is longer than Twait and therefore the agent is not capable to find the
route. Therefore, the agent does not find the optimal state and converges to a state with
two congested flows. The congested flows are included in the calculation, resulting in an in-
crease in average latency at a load of LL = 110%. This shows that the approach based on RL
routes the flows in such a way that the largest possible number of flows do not experience
congestion under the assumption of static states.

4.2.7 Merging & Initialization

As described in section 3.2.2, the state- and action-spaces change when a new flow is added
to the network. This would result in resetting the Q-table which would require the agent to
be re-trained to find the optimal state in the network. An approach to prevent this, is using
the Q-values Q(s, a) with the greatest similarity to the previously calculated Q-table. To eval-
uate this functionality, first the joining flow scenario is evaluated. Secondly, the topology is
customized by swapping the bandwidths of the links. These two scenarios are introduced in
section 4.1.1 Two flows are first selected randomly from the set F = {fh11,h41 , fh12,h42 , fh13,h43}.
After a short time which is sufficient to learn the optimal state, the third flow joins the net-
work. There are two ways, to reinitialize the Q-table or to use the table which contains the

56



Q-values for the setup of two flows (i.e. merge them). Also the two possibilities of initial
routing, as presented in section 3.2.3, are evaluated. Graph 4.12 shows the performance in
terms of convergence time and average latency after the addition of the third flow of the four
combinations: Merging Q-table and resetting the Q-table, each with or without SPF initial-
ization with the introduced topology shown in figure 4.1. Since the time steps are counted
from the experiment’s beginning, the moment of the addition of the third flow should be
subtracted to get absolute convergence times. In the plots, the convergence times can be
relatively compared. The graph implies that no considerable performance gains are recog-
nizable for the flow table merging or the SPF initialization.
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Figure 4.12: Convergence time steps and latency d after convergence of the different com-
binations of reactions on a joining flow for the original topology.

To test whether the performance depends on the topology, the bandwidths of the links were
flipped like described in section 4.1.1. Graph 4.13 shows the performance of the features
in the modified topology.
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Figure 4.13: Convergence time steps and latency d after convergence of the different com-
binations of reactions on a joining flow for the modified topology.

The results show that the performance of the merging feature depends on the topology
and delivers better performance in the modified topology. Initialization via SPF on the other
hand does not provide any benefits.

4.2.8 Scalability

The previous measurements were applied to a relative small topology and therefore in cor-
respondingly small state and action spaces. To show the influence of the number of the
action values |Q| on the convergence time, the extended topology as described in section
4.1.1 is used. The scalability level m defines the number of flows |F| and additionally the
possible paths for each flow |P(f )| = m. Figure 4.14 shows the convergence times in relation
to the scalability level m. For the exploration, softmax with a temperature of τ = 5 ·10–5 was
used. The theoretical average latency after convergence should be considered as close to
20ms, although as described in section 4.1.1 the measurement uncertainty caused by the
latency measurement should be taken into account. The boxplot 4.14 shows that the con-
vergence time does not scale linearly with the scalability level m. Additionally, the boxplots
show that for a scalability level of m = 4 the expected latency value was clearly exceeded,
which is due to the fact that the exploration was not sufficiently strong.
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Figure 4.14: Convergence time steps and following average latency in relation to the scala-
bility level.

Table 4.2.8 shows the number of Q-values |Q|, which can be calculated by the equation 4.1.1,
in comparison to the median and the average of the convergence times.

Level |Q| Average Median
2 12 5.95 6.00
3 189 687.75 468.50
4 3328 4885.07 3396.00

Table 4.3: Average and median values for time steps until convergence.

In figure 5.7 in the appendix the average of the average latency of all flows d over time steps
is also shown. This shows that after an alleged minimum has been found, the latencies do
not change far from it. To sum it up, this evaluation scenario demonstrates the need for
sufficient exploration, optimally combined with annealing, to find the global minimum.
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5 Conclusion & Outlook

5.1 Conclusion

In this thesis a new approach for routing and traffic engineering in Software-Defined Net-
works was presented and evaluated. The existing solutions struggle to keep up with the
growing network size and number of devices either due to unrealistic distributions of traffic
in networks or due to high computational complexity. In addition, the implementation of
these solutions is often complex in design and hence involves additional engineering effort.
Therefore a purely data-driven different approach was chosen and the network should be
optimized without a model only by using experiences gained from the interaction with the
network. For this purpose a system based on Reinforcement Learning was implemented.
It is capable to record the current metrics of the network, such as the latency. Using the
actual network data, the RL agent learns how to optimize the network with the objective of
latency minimization and congestion prevention. As the state space, a combination of cho-
sen paths of the flows in the network was chosen. To define the possible actions which the
agent can perform, the rerouting of the flows to different paths were selected. Therefore
two different approaches have been defined, the possible rerouting up to multiple flows or
the introduction of a limitation of allowing only one flow to be rerouted. For the determina-
tion of the possible paths of an end to end connection a path search algorithm based on
DFS was implemented. To enable the rerouting of flows in the network, an algorithm was
developed and added to the solution. The algorithm has the advantage of not interrupting
packet flows, what would result in losses in the connection, by executing the changes of the
flow table entries in a specific order. As a reward function (i.e. the optimization objective),
the quadratic mean of the latencies of the flows have been chosen. This results in a fair
optimization of all flows in the network without favouring an individual one. Using RL, the
system learns independently the optimal constellation of the possible paths of flows in the
network leading to a state in which the average latency of all flows in the network is mini-
mized. It has been shown that the proposed solution is capable to handle different network
topologies and number of traffic flows. Additionally, the RL system also successfully detects
load changes and performs actions to adjust the routes of the flows accordingly. Features
such as Optimistic Initialization, SPF initialization and the merging of the Q-tables have been
implemented and tested. The optimistic initialization can speed up the learning process if
the values are chosen wisely. It have been shown that merging the Q-tables and the initial-
ization can lead to a faster convergence in specific cases that depend on the topologies and
flows in the network. To briefly summarize, a framework was created in which an RL agent
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learns and maintains the optimal placement of flows independently and without requiring
engineering effort. In addition to recording the latencies in the network, it also includes
the efficient routing of flows and can be used simply for further research. Various meth-
ods, features and parameters of the RL implementation were successfully evaluated in this
framework.

5.2 Outlook

In this work, RL is applied successfully to optimize the latency of connections between hosts.
The experiments on the scalability showed that the non-linear scaling of the state and action-
space in relation to topology size and flow count could lead to long convergence times in
real-sized networks. One possibility to tackle the growing state and action-space could be
the usage of switch-to-switch, so entry- and exit-switch to the network, connections instead
of taking directly the flows. In other words, flows with the same entry and exit-switch would
be bonded and treated as one connection. However, this would imply less effective RL due
to limited actions, that the agent could perform. An easy solution would be to set limitations,
such as a maximum number of paths a flow could take. But as a result, limiting the possible
actions of the agent also limits its capabilities to find a optimal state. Another option could
be the generalization of the actions, for example changing the flow with the largest delay
to the second precalculated shortest path. Therefore the action space would not grow in
relation with the state space but also limit the effectiveness of the agent’s actions.
The current approach does not include any information about the bandwidth, the natural
cause of congestion in links. One possibility would be to add the current bandwidth of flows
or links to the state space. Since the bandwidth of the flows and their route are independent,
the resulting state space would be even bigger with discrete bandwidth levels lvlbw in |S| =∏

f∈F
|P(f )| · |lvlbw|. As a result, the number of Q-table entries would also grow which in turn

would result in longer exploration. Therefore it would be beneficial to separate the state
and action space by only including the bandwidth information of the links or flows in the
state space.
By using tabular Q-learning, a discretization of the continuous values would be necessary
and could result in loss of information. Function approximators, such as neural networks [103],
could provide a solution [1, p. 190 ff.]. A bigger topology or high number of connections
would still lead to an exploding action space. An interesting approach to handle large state-
action spaces with Deep Reinforcement Learning, the combination of Reinforcement Learn-
ing with Deep Neural Networks, gives Dulac-Arnold et al. in [104]. Therefore they embed the
discrete actions into a continuous space instead of sampling from a categorical distribution.
Then after applying a continuous policy, the closest discrete action depending on a metric is
executed. This allows to handle larger networks as well. For a faster convergence, annealing
could be applied. This would mean to start with a higher degree of exploration and reducing
it over time. Essentially, this could lead to an efficient exploration of all network states and
later to a lower regret.
An option to apply Reinforcement Learning to on-demand routing would be to take the
current network state as a state and to learn how to route a newly incoming flow. In this
case, the actions would be the possible paths, the new flow could be routed on.
Another interesting aspect would be to modify the reward function to let the agent follow
a different optimization objective such as network utility maximization or even a mixture of
objectives that could be several QoS criteria. Additionally, the fairness of the agents actions
should be considered. The test case with increasing load levels from section 4.2.6 shows
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that the RL agent tries to maximize the number of uncongested flows when the network is
overloaded. On the one hand, this leads to flows with lower bandwidth requirements being
preferred. On the other hand, all flows for which no uncongested path can be found are
routed via the same link, so that the packet drop rate rises sharply. The performance could
be evaluated with fairness metrics, such as max-min-fairness [63] or α-fairness [64, p. 13
- 17]. For this work, flows containing UDP packets have been chosen for the evaluation.
Adding TCP flows would require a modification of the Reinforcement Learning setup. Due
to the congestion window, it is possible to route all flows over the shortest path, but under
a lower bandwidth of all flows. Finally, the application of the presented approach on real
network could be investigated.
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Figure 5.1: Topology containing four switches and three flows with a capacity of 4Mbit/s over
the path with the lowest delay of 20ms.
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Listing 5.1: Default configuration

class LMode(Enum):
SHORTEST˙PATH = -1
Q˙LEARNING = 1
SARSA = 2

class ExplorationMode(Enum):
CONSTANT˙EPS = 0
FALLING˙EPS = 1
SOFTMAX = 2
UCB = 3

class PathInitialization(Enum):
SPF = 1
RANDOM = 2

class ActionMode(Enum):
ONE˙FLOW = 1
DIRECT˙CHANGE = 2

class Config(object):
learning˙mode = LMode.Q˙LEARNING
# Learning rate
alpha = 0.8
# Discount Factor
gamma = 0.8
# Eps-greedy
epsilon = 0.05
# Softmax
temperature = 0.00005
# UCB
explorationDegree = 5
# Exploration Mode
exploration˙mode = ExplorationMode.SOFTMAX
# Action mode
action˙mode = ActionMode.ONE˙FLOW
# how long to wait until starting to gather new rewards
T˙wait = 2
# measurement time for each load level in each iteration
run˙time = 1440
# load levels
load˙levels = [10]
# number of iterations per measurement
iterations = 1
# init˙value for Softmax
softmax˙init˙value = - float(’inf’)
# if LoadLevel Test Case
resetQTestFlag = True
# splitting up - each load level different log file
splitUpLoadLevelsFlag = False
# if merging QTables when new flow joins
mergingQTableFlag = False
# initialise with shortest path first or with a random selected path
path˙initialization = PathInitialization.RANDOM
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