Supervisor: Juan Cabrera
Supervisor: Pit Hofmann, Pengjie Zhou
Inspired by our surrounding nature, molecular communication uses molecules and nano-particles as information carriers. Mainly intended for communication at the micro- and nano-scale level due to its biocompatibility and energy efficiency compared to conventional wireless systems, there is also a promising application for molecular communication in the macro-scale range with leakage detection. Leakage detection describes the process of identifying, locating, and assessing the presence of leaks in various system setups, such as pipelines, containers, or structures. The task involves investigating the potential of employing molecular communication principles for detecting leaks in a predefined system. The setup contains a mobile robot, e.g., a robot arm or the Boston Dynamics Spot robot dog, for exploring a room and a sensory part. The aim is to develop a robust and efficient system capable of detecting and localizing leaks in environments where traditional methods may be impractical or insufficient. The thesis will delve into the fundamentals of molecular communication, exploring how signaling molecules can be utilized to convey information about the presence and location of leaks. Furthermore, the research will focus on designing and implementing experimental setups to validate the effectiveness of the proposed approach. Through this study, the goal is to contribute to the advancement of leak detection technologies, particularly in scenarios where conventional methods face limitations.