Traffic Theory

(German: Nachrichtenverkehrstheorie)

Lecturer: Dr.-Ing. Rico Radeke
Main lecturer:
Dr.-Ing. Rico Radeke
Assistant: Dipl.-Ing. Frank Gabriel
Teaching Assistant:
Dipl.-Ing. Frank Gabriel

EXAM ROOM change: BAR 218 13:00-15:00 31.07.2019


This course offers the theoretical base and practical methods for modelling, analysis, and performance investigation of communication systems. The students will learn how to use known formulas for traffic theory problems. The abstraction from reality to model will be done for different practical applications and networks.

Topics covered are:

  • Introduction and Examples
  • Probabilities, Random Distributions, Moments, Properties of distributions
  • Random processes
  • System modelling using traffic theory, terminology, classification, performance measures
  • Little’s law, PASTA, BASTA
  • Theory of Marcov chains (discrete and continous time)t
  • Examples of communication systems to be analyzed with Markov chains
  • Outlook on further tools (matrix analysis, fluid-flow, software tools, Jackson networks, Gordon-Newell, BCMP, Mean value analysis, network calculus (deterministic, stochastic)

Course Schedule

Lectures (L) and Exercises (E), without strict pattern:
Thursday 13:00-14:30 (even weeks), BAR 213
Friday 11:10-12:40 (weekly), BAR 213

04.04.2019BAR 213L1: Introduction to Course, Course Overview, Learning Agreement, Examples, Probabilities, Random Distributions
05.04.2019BAR 213L2: Discrete random distributions
12.04.2019BAR 213L3: Continous random distributions
18.04.2019BAR 213L4: Moments and stochastic processes
19.04.2019---Good Friday
26.04.2019BAR 213ComNets II !!!
02.05.2019BAR 213E1: Random distributions
03.05.2019BAR 213ComNets II !!!
07.05.2019GÖR 229L5: Markovian chains with discrete time
10.05.2019BAR 213L6: Markovian chains with continous time
14.05.2019GÖR 229E2: Markovian chains with discrete time I
16.05.2019BAR 213E3: Markovian chains with discrete time II
17.05.2019BAR 213L7: Global and Local Stability, Equilibrium
24.05.2019BAR 213L8: Kolmogorov Forward and Backward Equations
30.05.2019---Ascension Day
31.05.2019self studiesE4: Markovian chains with continous time
07.06.2019BAR 213L9: Multi dimensional Markovian chains
21.06.2019BAR 213L10: Theory of Markovian Chains
27.06.2019BAR 213L11: Queues, Kendall, Little
28.06.2019BAR 213L12: Analytic Evaluation of Queueing Systems
05.07.2019BAR 213E5: Markovian chains with continous time II / Queuing systems
11.07.2019BAR 213L13: M/GI/1/inf
12.07.2019BAR 213E6: Exam examples
30.8. 09:00BAR I/15L14&E7: Wrap Up / Exam examples / Consultation
31.8. 13:00-15:00BAR 218Exam

Module Number

ET-12 10 05
Module Description in Diplomprüfungsordnung


Material is uploaded to OPAL.


written, 120min


Exercises will be on discussion base between students and teaching assistant to focus on unsolved problems.