5G Summit 2018

We are thankful for the support of our industrial partners:

We would also like to thank for the support of:

We are contributing to the following projects and initiatives:

 ProjectFunding and
Duration
Description
5G Lab Germany09/2014-With more than 20 faculty members, more than almost 600 researchers and our cooperation partners from industry, 5G Lab Germany works on a holistic view of 5G.
CeTI
Centre for Tactile Internet with Human-in-the-Loop
DFG Clusters of Excellence
01/2019- 12/2025
We advocate establishing the Centre for Tactile Internet with Human-in-the-Loop (CeTI) at Technische Universität Dresden (TUD) to achieve significant breakthroughs for enhancing collaborations between humans and machines or, more generally, cyber-physical systems (CPS) in real, virtual, and remote environments. CeTI’s vision is to enable humans to interact with co-operating CPS over intelligent wide-area-communication networks to promote equitable access to remote work and learning environments for people of different genders, ages, cultural backgrounds, or physical limitations. Thus, going far beyond the current state of the art, CeTI democratises the access to skills and expertise the same way as the current Internet has democratised the access to information.
FAST CLOUD
Realisation of real-time cloud applications
BMBF
07/2016-05/2019
Goal of the project is real-time control and steering of Cyber Physical Systems can be achieved through agile and distributed cloud applications. The novel concept is the practical implementation through the use of software defined resources (NFV, SDN). With the help of network coding latencies will be reduced while keeping a high level of resilience and safety.
HAEC
Highly Adaptive
Energy-Efficient Computing
DFG SFB 912
07/2015-2019
Our chair is in the Architecture group of HAEC, which bridge between the hardware and the software group closely following the communication demands of the software structure using optimized network coding and routing.
Atto3D
Communication infrastructure for atto networks in 3D chipstacks
ESF Nachwuchs- forschergruppe
09/2015-08/2018
We focus on the different communication techniques to be employed in the 3D stacked chipset and study the potential for accelerating network coding applications using the multi-core chipstack.
CoSIP
Compressed Sensing in Information Processing
DFG SPP 1798
10/2015- 09/2018
Joint design of compressed sensing and network coding for wireless meshed networks.
Fast Optics
BMBF
2017- 2020
In this project we use optical signals in the near infrared range for communication. The IR ray does not penetrate the eye and at a power of less than 10mW it will meet the eye's safety standards. In addition, IR radiation communication does not suffer from ambient light as noise, which requires less sensitive and less expensive receivers. In general, OW is generally safer than WiFi, which requires encryption and high security to prevent eavesdropping. Both VLC and IR radiation communication ensure good privacy through the walls. In contrast to VLC, IR radiocommunication could enable more secure indoor communication, especially when windows are well coated.
Fast Robotics
BMBF
2017-2020
fast robotics aims to supplement or replace existing wired communication systems for robots with mobile radio technology. The availability of new mobile communication solutions with high reliability and bandwidth as well as low latency in data transmission enables new control options for robots and robot systems, both fixed and mobile. This includes "distributed motion control","simplified integration of external sensors" based on the same communication technologies and mechanisms, etc. The distributed control concepts to be developed in the project consist of a combination of quantitatively significantly improved mobile communication systems in combination with domain-specific communication and control mechanisms. These not only offer advantages for stationary robot systems, but are also a key technology for the future market of mobile service robotics.
5GangBMBF
03/2017-02/2020
To withstand the pressure of global competition in industrial production, companies have to speed up their manufacturing processes and optimize the use of resources. They should be able to react to individual requirements of customers and the market fast and flexibly at the same time. Often flexibility is limited by optimized processes though. This creates the need for new procedures that enable both: Cost savings due to improved utilisation of machines and an increase in flexibility.
TacNetBMBF
04/2017- 03/2020
The overriding goal of TACNET 4.0 is the development of a uniform industrial 5G communication system, which integrates 5G networks and industrial communication networks. To this end, 5G concepts are being expanded with innovative industry-specific approaches, cross-network adaptation mechanisms are being developed and open interfaces between industrial and mobile radio systems are being developed.
5G NetMobilBMBF
03/2017-02/2020
The goal is to develop a hollistic communication infrastructure for tactile connected cars.
AutoDriveECSEL
06/2017-
05/2020
Advancing fail-aware, fail-safe, and fail-operational electronic components, systems, and architectures for highly and fully automated driving to make future mobility safer, more efficient, affordable, and end-user acceptable.
ITN SecretEU
01/2017-12/2020
SECRET is a collaborative European Training Network which aims to a new deployment of small cells based on the notion of mobile small cells. In particular, our chair is focusing on the design and optimization of network coded cooperative (NCC) networks to deliver disruptive radio networking topologies to emulate mobile small cells to provide femtocell-like services on the move.
eNC2DFG
02/2017-01/2019
Research in the field of communication technology and control systems engineering for cyber physical systems in realtime.
TEK-EKGBMWi
08/2017-
01/2022
With this research project, a new mobile and highly innovative measuring system (TEK-EKG) for the detection of the thermal and electrical reference behaviour of a wide range of properties as well as the plant operating behaviour is being developed and put into practice.
National 5G Energy HubBMWi
05/2018-
04/2020
In the first step of the research project, software and hardware are developed that enable communication between energy applications and higher-level system components. This new toolbox will provide all users of this technology with secure communication access to energy systems and applications. This will enable public institutions and companies to offer new products and services in the energy sector immediately after the planned introduction of the 5G standard in 2020.
5G-ConnectedMobility5G-ConnectedMobility creates a dedicated network infrastructure and application environment for 5G analysis and testing in real-time for Vehicle-to-vehicle, Vehicle-to-infrastructure, and Railway-to-infrastructure. The project is based on a test track of approx. 30 km along the A9 motorway and a high-speed railway track between Nuremberg-Feucht and Greding in Bavaria, Germany. Founding Members of the “5G-ConnectedMobility” consortium are Ericsson, BMW Group, Deutsche Bahn, the three German mobile network operators with Deutsche Telekom, Telefónica Deutschland and Vodafone, the TU Dresden 5G Lab Germany, the Federal Highway Research Institute (BASt) and the Federal Regulatory Agency (BNetzA). The Federal Ministry of Transport and Digital Infrastructure and the Bavarian Road Construction Administration support the project.

We are supported by the TUD-GWT GmbH for several project administrations.

Former Projects:

 ProjectFunding and
Duration
Description
CFAED
Center for Advancing Electronics Dresden
DFG Clusters of Excellence, EXC 1056
08/2012- 12/2018
Our chair is in the Resilience path of CFAED which works on the resilience of the devices made from the non- CMOS materials by the other paths.