Vincent Latzko

Dipl.-Ing. Vincent Latzko

PhD Researcher

Vincent Latzko received his Diploma degree in Electrical Engineering and Information Technology from Technische Universität Darmstadt, with a focus on the fundamental theory of electromagnetic fields (www.temf.de) and the numerical solution of Maxwell’s equations using a multitude of mathematical and algorithmic methods (such as DG-FEM, FDTD or BEM/Integral Equation solvers). He worked extensively in fundamental research at one of Europe’s largest particle accelerator facilities, the GSI Helmholtzcentre for Heavy Ion Research (www.gsi.de).

In his diploma thesis “Robust Time of Flight Denoising using Regression Tree Fields” with Prof. PhD Carsten Rother at the computer vision lab dresden he looked at a modern machine learning approach to restore distorted depth maps using non-parametric Gaussian Conditional Random Fields.
He afterwards focused on analytical approaches for regression problems as well as on data driven, deep learning models.

Contact

Phone: +49 351 463-35337
Email: vincent.latzko@tu-dresden.de
riot: @s1480820:tu-dresden.de

Research Interests

  • Machine Learning
  • Compression
  • Software Defined Networks
  • Network Slicing
  • Network Function Virtualisation

Teaching

SS 20

  • Communication Networks 2
  • ICT for Smart Grids

WS 19/20

  • Oberseminar

WS 18/19

  • Communication Networks 3
  • Problem Based Learning
  • Oberseminar
  • Mentoring / Grundlagen ET

SS 18

  • Traffic Theory
  • Electrical and Magnetical Fields

WS 17/18

  • Communication Networks 3 / Problem Based Learning
  • Mentoring / Grundlagen ET

Supervision

  • Predictive Placement of Virtualized Network Functions for Urban Vehicular Routing (Preliminary Title of Master Thesis Giovanni Tancredi Iavarone, of Prof. Antonella Molinaro)
  • Learning Coding Schemes (Diploma Thesis Alexander Sarmanow)
  • Learning Optimal Congestion Control Algorithms (Diploma Thesis Christian Vielhaus)
  • Improving Next-Generation Video Codec Segmentation using Deep Learning Techniques (Master Thesis Cheng Chiang Huang)
  • Deep Reinforcement Learning for Traffic Control (Diploma Thesis Johannes Busch)
  • Optimising and Learning Coding Parameters (Study Thesis Christian Vielhaus)
  • Telepresence Demonstrator – Remote Controlled Car via Augmented Reality (Study Thesis Renbing Zhang, joint supervision with Alexander Kropp)
  • Exploring Resilience in-car using Multipath SDN (Study Thesis Florian Kemser)

Review

  • IEEE ComSoc
  • Wiley

Publications

2020

Mehrabi, Mahshid ; Taghdiri, Pooria ; Latzko, Vincent ; Salah, Hani ; Fitzek, Frank H P

Accurate Energy-Efficient Localization Algorithm for IoT Sensors Inproceedings

2020 IEEE International Conference on Communications (ICC): SAC Internet of Things Track (IEEE ICC'20 – SAC-06 IoT Track), Dublin, Ireland, 2020.

BibTeX

Latzko, Vincent ; Vielhaus, Christian Leonard ; Fitzek, Frank H P

Use Case Driven Evolution of Network Coding Parameters Enabling Tactile Internet Applications Inproceedings

2020 IEEE International Conference on Communications (ICC): Communication Theory Symposium (IEEE ICC'20 – CT Symposium), Dublin, Ireland, 2020.

BibTeX

Bonetto, Riccardo ; Latzko, Vincent

Machine Learning Book Chapter

Fitzek, Frank H P; Granelli, Fabrizio ; Seeling, Patrick (Ed.): Computing in Communication Networks – From Theory to Practice, 1 , Chapter 8, Elsevier, 1, 2020, (https://cn.ifn.et.tu-dresden.de/compcombook/).

BibTeX

2019

Mehrabi, Mahshid ; You, Dongho ; Latzko, Vincent ; Salah, Hani ; Reisslein, Martin ; Fitzek, Frank H P

Device-Enhanced MEC: Multi-Access Edge Computing (MEC) Aided by End Device Computation and Caching: A Survey Journal Article

IEEE Access, 2019.

BibTeX